
UNCLASSIFIED

 AD-E403 613

Technical Report ARWSE-TR-14009

ALGORITHMIC APPROACHES FOR PLACE RECOGNITION IN
FEATURELESS, WALLED ENVIRONMENTS

Naomi Zirkind

January 2015

Approved for public release; distribution is unlimited.

AD

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND
ENGINEERING CENTER

Weapons and Software Engineering Center

Picatinny Arsenal, New Jersey

UNCLASSIFIED

The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially
available products or services does not constitute official endorsement by or
approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent
disclosure of its contents or reconstruction of the document. Do not return
to the originator.

UNCLASSIFIED

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2015
2. REPORT TYPE

Final
3. DATES COVERED (From – To)

4. TITLE AND SUBTITLE

ALGORITHMIC APPROACHES FOR PLACE RECOGNITION
IN FEATURELESS, WALLED ENVIRONMENTS

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHORS

Naomi Zirkind

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army ARDEC, WSEC
Tactical Effects, Protection & Interactive Technologies Directorate
(RDAR-WSH-N)
Picatinny Arsenal, NJ 07806

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army ARDEC, ESIC
Knowledge & Process Management (RDAR-EIK)
Picatinny Arsenal, NJ 07806-5000

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

Technical Report ARWSE-TR-14009
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 This report gives a detailed presentation of three algorithms for automated place recognition by a mobile
robot in featureless, walled environments – where conventional feature descriptors are ineffective. The robot
is assumed to have on it an inertial measurement unit (IMU) and a ranging device such as a light detection
and ranging system. The environmental descriptors presented here are based on trajectory features and on
junction features. The report shows how to derive the descriptor values at each point in the trajectory and
how to compare descriptors recorded at different points in the trajectory to determine how closely they match.
The output of the algorithms can be fed to an external mapping program and can be used to help correct
errors in the map due to IMU drift. These algorithms can be combined with algorithms for fully featured
environments to implement a nearly all-environment mapping system.

15. SUBJECT TERMS

Loop closure Place recognition Featureless environment Feature descriptor Mapping
algorithm

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

SAR

18. NUMBER
 OF
 PAGES

75

19a. NAME OF RESPONSIBE PERSON

Naomi Zirkind
REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area

code) (443) 861-1438

UNCLASSIFIED

Approved for public release; distribution is unlimited.

i

CONTENTS

 Page

Background 1

Summary 3

Introduction 4

Methods, Assumptions, and Procedures 5

 Trajectory Based Algorithm 5
 LT-Junction Based Algorithm 17
 General Junction Based Algorithm 39

Results and Discussion 60

Conclusions 61

Recommendations 62

References 63

List of Symbols, Abbreviations, and Acronyms 65

Distribution List 67

FIGURES

1 Conceptual diagram showing incorrect loop closure due to drift 2

2 Initialization and incrementing of buffer 6

3 Association of straightness score matrix with buffer data 7

4 Straightness score calculation 9

5 Corner detection procedure for trajectory based algorithm 11

6 Descriptor data calculation procedure 12

7 Scoring method for evaluation of target and candidate match for
 trajectory based algorithm 14

8 High level flow chart for trajectory based algorithm 16

9 Initialization and updating of buffer matrix using wall data 19

10 Process for updating buffer data 21

11 Straight T-junction 22

UNCLASSIFIED

Approved for public release; distribution is unlimited.

ii

FIGURES
(continued)

 Page

12 Bent-T junction 23

13 Identification of wall distance maximum in buffer 24

14 Process for determining whether a hallway has a gap 25

15 Procedure for calculating T-junction descriptor parameters 27

16 Wall normal vectors for path straightness calculation 28

17 Procedure for calculating L-junction descriptor parameters 30

18 Scoring method for evaluation of target and candidate match for
 LT-junction based algorithm 32

19 Procedure for calculating matching score for T-junctions 36

20 High level flow chart for LT-junction based algorithm 38

21 Typical input image for general junction based algorithm 39

22 Short exposure image of hallway junction taken by LIDAR 40

23 Terminology for hallway features 42

24 Summary of image processing stage of general junction based algorithm 43

25 Illustration of side-by-side segments 44

26 Definition of centerline for partially side-by-side segments 45

27 Identification of clusters from centerline endpoints 46

28 Summary descriptor derivation stage of general junction based algorithm 47

29 Example of poorly matching multiple scans 49

30 Overall descriptor matching process 50

31 Overlaid junctions at a particular increment of rotation 51

32 Orientation metric calculation 52

33 Similarity test for target junctions of a particular scan 54

34 Definition of overall centroids 55

35 Association between target junctions and database junctions 56

UNCLASSIFIED

Approved for public release; distribution is unlimited.

iii

FIGURES
(continued)

 Page

36 Leg matching process for two junctions 56

37 Terminology for calculation of distance between two line segments 57

38 Calculation of multi-junction output data 59

TABLES

1 Descriptor values for trajectory based algorithm 10

2 Output data for trajectory based algorithm 15

3 List of selectable parameters for trajectory based algorithm 15

4 T-junction descriptor parameters 26

5 L-junction descriptor parameters 29

6 Summary of descriptor parameters for L- and T-junctions 31

7 Output data for LT-junction based algorithm 37

8 List of selectable parameters for LT-junction based algorithm 37

9 Summary of corner objects in figure 23 42

10 Junction descriptor parameters for general junction based algorithm 47

11 Output data for general junction based algorithm, single junction case 53

12 Output data for general junction based algorithm, multi junction case 58

13 List of selectable parameters for general junction based algorithm 60

UNCLASSIFIED

Approved for public release; distribution is unlimited.

v

ACKNOWLEDGMENTS

 The author acknowledges several technical discussions with Joshua Wainer of Robotic
Research, LLC in connection with the algorithms presented here. These discussions helped refine
the ideas that led to the composition of these algorithms. He supplied two images in this report.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

1

BACKGROUND

 Robotic mapping is an important capability for a variety of purposes. Robots can explore
areas that are too dangerous or contaminated for humans to explore. People can use maps that the
robots make of such areas to plan missions and activities to be performed in these areas. For
example, in law enforcement and military applications, a robot could be used to explore and map a
structure in preparation for entrance into that structure. Robots could also be used to explore
structures contaminated with radioactivity or other contaminants.

 As a robot travels through a new environment in order to map it, the robot must continually
update the map as it gathers new information. In addition, it may encounter objects or locations of
interest as it travels and must record their location for future reference. Thus, the robot must
simultaneously map the environment and localize itself within that environment in order to record the
location of places of interest. The discipline of simultaneous localization and mapping (SLAM) has
been studied intensively over the past several years.

 Many technical approaches have been proposed to the SLAM problem, each using a
particular set of sensors on the robot. The simplest method for a robot to localize itself is to use a
receiver for a global navigation satellite system (GNSS), such as global positioning system (GPS),
Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS - a Russian satellite-based
navigation system), Galileo, and/or Bei Dou. In addition to GNSS receivers, commonly used sensors
are visual cameras (refs. 1 and 2), light detection and ranging (LIDARs) (refs. 3 and 4), inertial
measurement units (IMU) like gyroscopes and accelerometers, odometry sensors, and even
sometimes magnetometers (refs. 5 through 7) and barometers (ref. 1).

 In some environments, such as indoor environments, GNSS signals are not available. These
environments are sometimes referred to as GPS-denied. In such environments, the robot must rely
on its onboard sensors in order to localize itself and make an accurate map. Generally, IMU signals
are fused with camera and/or LIDAR data to derive an estimate of the robot’s location at any given
time. However, noise in IMU signals causes the calculated robot position to drift over time. This
cumulative drift error results in erroneous maps. One type of map error is incorrect loop closure, i.e.,
when the robot returns to a place it has previously visited, it “thinks” it is in a different location. For
example, if the robot drives in a large circular path and returns to its starting point, the calculated
trajectory will not be closed, though it should be. Figure 1 shows a conceptual illustration of how a
trajectory calculation error can lead to an incorrect loop closure.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

2

Figure 1
Conceptual diagram showing incorrect loop closure due to drift

 One way to correct drift error is to recognize, using sensors besides the IMU, when the robot
is revisiting a place that it had previously visited. If the robot could recognize a previously visited
place, then it could inform the mapping system to close the loop and to close the trajectory so that
both the previous and current visits are denoted by the same point on the map.

 How can the robot recognize a revisit to a place? This question is referred to as the place
recognition problem and is sometimes referred to as the loop closure detection problem. In general,
this problem is addressed by defining some type of feature descriptor and cataloging the descriptor
content of each place that is visited. Every time a new place is visited, the feature descriptor (or set
of descriptors) is calculated for that place. The newly calculated set of descriptors is then compared
with previously measured descriptor sets in search of a match. If a tentative match is found, the
quality of the match is determined and compared to a threshold value in order to make a decision
whether or not this is indeed a previously visited place.

 If a place recognition is made, then the two points (the originally and currently calculated
locations) are passed to a trajectory modification program. The trajectory modification program
adjusts the trajectory so that it smoothly connects the originally and currently calculated locations.
This trajectory correction completes the map correction that is performed as a result of the place
recognition (ref. 8).

 A variety of feature descriptor types for various types of sensor data have been proposed,
e.g., normal aligned radial features (ref. 3), speeded-up robust features (ref. 9), surface entropy (ref.
10), normal distribution transform (ref. 11), and signatures of histograms (ref. 12). In order for a
descriptor to be effective in characterizing a particular type of environment, that environment must
have some uniquely identifiable features that can be represented in terms of that descriptor. For
example, in order to use an edge detector, the environment must have edges in it, and different
locations in the environment must have unique patterns of edges. That is the only way a particular
location can be reliably recognized upon a revisit.

Start point
and actual
end point

Calculated
end point

Calculated
trajectory

Actual
trajectory

UNCLASSIFIED

Approved for public release; distribution is unlimited.

3

 If the robot uses IMUs with cameras and/or LIDARs to map a featureless environment such
as a network of hallways or tunnels, then no currently used feature descriptor can reliably
characterize locations in the environment. This work presents new types of feature descriptors that
can be used in such environments to recognize places. These descriptors can be used in featureless
environments with hallways that have nominally parallel walls.

 This work complements other work on indoor and outdoor mapping in GPS-denied
environments. Some sensors and descriptors work better indoors, and some work better outdoors,
but so far, to the author’s knowledge, very little has been published on an effective and reliable
descriptor for the featureless hallway or tunnel environment.

 Reference 13 does present an approach for using trajectory features for place recognition,
which is similar to the approach of the first of the three algorithms presented here. The approach of
reference 13 characterizes “regular patterns” in the trajectory and tries to recognize previously
traveled trajectory segments with the same pattern. That type of feature does not clearly distinguish
between different but similar trajectory segments and can lead to many false positive judgments. In
the experiment, six out of thirty loop candidates were incorrect. The approach presented here for
trajectory based place recognition seems that it would more unambiguously recognize corners in the
trajectory. However, the weakness of the approach in reference 13 is also its strength – it can
recognize features in many different types of paths, not only paths with corners in them. Thus, that
approach is in a sense complementary to the approach presented here, which clearly identifies
corners, but recognizes only corners.

 The work presented here could be combined with currently available place recognition
approaches to create an (almost) all-environment mapping system. The reason for saying “almost” is
that there is one type of environment in which place recognition does not seem to be feasible using
just optical and/or LIDAR sensors, and that is a large, empty, featureless setting. In such a setting,
perhaps a magnetometer or other type of sensor could be used together with inertial sensors for
improved place recognition.

SUMMARY

 The problem that the algorithms presented here address is how a robot equipped with an
IMU, and possibly a LIDAR sensor, that is travelling in a walled, featureless environment can
recognize a place that it has previously visited during the current excursion. This problem is
important for robots that are mapping such environments because accurate place recognition helps
the mapping algorithm to partially correct errors in the map that are due to drift in the IMU data.

 This report presents three algorithms that use LIDAR and IMU data to extract relevant
information about the environment in order to form descriptors of each visited place. Then, each time
the robot visits a new place, it compares its newly measured descriptor with a selected set of
previously measured descriptors to determine whether a place recognition has occurred. If the
algorithm determines that place recognition has occurred, it passes the descriptor of the newly
visited place, the descriptor of the previously visited place, and a matching score to an external
mapping program.

 The main novelty of this work is the formulation of descriptors for such apparently featureless
environments. The descriptors are based on detected corners and junctions in the hallway structure
in which the robot is travelling. In addition, this work presents techniques for comparing different
instantiations of the descriptors to determine how well they match.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

4

 Although many algorithms have been published on place recognition in feature rich
environments, to the author’s current knowledge, place recognition in featureless, walled
environments has not been addressed in the published literature. This work could significantly
expand the set of environments in which automated place recognition can occur. However, due to
programmatic constraints, these algorithms have not yet been implemented in computer code, so
their true utility has yet to be discovered. The author recommends that these algorithms be
implemented, and refined and revised if necessary, in order to enable robots to effectively explore
new regions.

INTRODUCTION

 The algorithms presented here are useful for place recognition and loop closure detection in
situations in which a robot is driving in a network of possibly featureless hallways with nominally
parallel walls. The purpose of this report is to present a detailed description of the algorithms so that
other researchers could implement them or some variant of them and/or build on them to give them
more capabilities.

 This report presents the concepts of the three algorithms using verbal descriptions, diagrams,
and flowcharts to illustrate the concepts. The algorithms will henceforth be referred to as (1) the
trajectory based algorithm, (2) the LT-junction based algorithm, and (3) the general junction based
algorithm.

 The next three major sections describe the concepts, as well as the advantages and
disadvantages, of each of the three algorithms. The first major section describes the trajectory based
algorithm. This algorithm is useful for place recognition in situations in which a robot is driving in a
network of featureless hallways that constrains its motion to either nominally straight line driving
(with some meandering, possibly) or turning from one path segment onto another. The ground
surface on which the robot drives is assumed to be nominally flat, and therefore, the environment for
all three algorithms is represented as a two-dimensional (2D) world.

 This algorithm is the most versatile of the three since it does not explicitly assume anything
about the walls other than that they constrain the robot to move in fairly straight line path segments
with well defined turns. However, consideration of the characteristics of junctions in the path as
defined by wall contours can greatly assist in place recognition. Consideration of such junctions will
add some complexity to the algorithm and is addressed in the two junction based algorithms.

 The second major section describes the LT-junction based algorithm. The algorithm has this
name because it detects junctions that have two legs – denoted as L-junctions and those that have
three legs – denoted as T-junctions. This algorithm treats a junction shaped like a plus sign (+) as two
back-to-back T-junctions. This algorithm uses more environmental information than the trajectory
based algorithm. However it could be further improved by considering junctions with arbitrary
numbers of legs.

 The third major section describes the general junction based algorithm. This algorithm can
detect junctions with arbitrary numbers of legs but requires an additional preprocessing step for the
input data that the LT-junction based algorithm does not have. It requires a 2D visual image of the
area that has been traversed so far to be produced.

 Each of the three major sections first describes the overall concept of the presented
algorithm. The section after that describes the type of data that is input to the algorithm and
preprocessing steps that are required to enable derivation of the descriptor values from the input

UNCLASSIFIED

Approved for public release; distribution is unlimited.

5

data. The next section presents the feature descriptor that is used to represent the key information
about visited places and shows how it is derived from the preprocessed input data. The section after
that describes the process for comparing descriptors to determine how well they match each other.
The final section describes the derivation of the output data to pass to a trajectory adjustment
program, which uses the place recognition information to recalculate the previously calculated
trajectory.

METHODS, ASSUMPTIONS, AND PROCEDURES

 This section describes in detail the trajectory based algorithm, the LT-junction based
algorithm, and the general junction based algorithm for place recognition in walled, featureless
environments.

Trajectory Based Algorithm

 This section describes, for the trajectory based algorithm, the input data and its
preprocessing, the feature descriptor and its derivation from the preprocessed input data, the
descriptor comparison process, and the derivation of output data.

 The trajectory based algorithm uses as simple and broadly applicable an approach as
possible. This approach uses features of the trajectory itself to represent visited places. That is, at
each increment of the robot’s travel, the algorithm uses a sliding buffer to determine whether the
robot has made a turn. It does this by calculating a straightness score for all the poses in the buffer.
The score is based on the mean squared deviation of all the poses from the best fit line. A large
straightness score means a nonstraight line.

 A corner is detected when the straightness score increases to a peak and then decreases
again. If the peak is higher than a user-defined threshold, then it is accepted as a corner. The
threshold prevents gentle curves in the trajectory from being considered as corners. Since we are
looking for maxima in the straightness score, we cannot immediately determine whether we are at a
corner. We must travel some distance beyond the corner in order to determine whether we have
traversed a corner. The situation is analogous to the way economists cannot determine whether we
have entered or recovered from a recession until several months after the event since only then can
they identify patterns in prior data.

 A database of detected corners is maintained, and new candidates are compared with
detected corners according to some similarity metrics. The highest scoring candidate, if its score is
above a user-defined threshold value, is considered a recognized place. If a place recognition is
made, the trajectory is to be updated (by a separate program) to indicate that the actual corner
location is the location that was estimated in the original visit to that corner.

 Input Data and Preprocessing for Trajectory Based Algorithm

 The input data for the trajectory based algorithm is a time stamped sequence of 2D
robot poses. Each pose is of the form (x, y, θ, t), where x and y are the 2D coordinates of the center
of the robot projected onto the ground in a global frame of reference, θ is orientation angle of the
robot, and t is the time at which the pose data was measured. As the robot drives along, the pose is
measured and recorded at regular intervals, resulting in a continuous stream of pose data.

 A moving buffer is used to store the most recently recorded set of consecutive pose values,
denoted by pi , where i is the index of the pose. The user is free to choose how many elements the

UNCLASSIFIED

Approved for public release; distribution is unlimited.

6

buffer contains, but for illustrative purposes, in this report it will be assumed to have eleven values,
as shown in figure 2.

Before mapping:

0 0 0 0 0 0 0 0 0 0 0 0

After 1 step:

0 0 0 0 0 0 0 0 0 0 0 p1

After 11 steps:

0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

After 12 steps:

p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Figure 2
Initialization and incrementing of buffer

 In figure 2, each element pi is a pose of the form (x, y, θ, t). Before the robot begins mapping,
all elements are zero. As each new pose pi is recorded, it is placed in the highest (eleventh, in this
example) element of the buffer and the lowest (oldest) element of the buffer is dropped. The purpose
of this buffer is to provide data for continual calculation of the straightness score matrix, which
characterizes the local straightness of the trajectory.

 The straightness score matrix S is used to calculate turning angles when turns in the
trajectory are detected. Like the buffer data, the straightness score matrix could be a moving buffer,
but for simplicity, in this example it is assumed to be a continually expanding matrix. Before the robot
begins mapping, all elements of the straightness score matrix are zero. Once the robot has mapped
eleven poses, the algorithm begins to calculate straightness scores. Each score is associated with a
specific pose, and the score is the straightness of the set of poses consisting of that pose plus the
ten prior poses.

 The straightness score matrix has two rows. For each column j, row 1 holds a straightness
score si , which is calculated from a set of eleven poses. Row 2 holds the index of the most recent of
those eleven poses. New straightness score data is inserted in the higher elements of the matrix S.
Figure 3 illustrates how elements of the straightness score matrix are associated with corresponding
buffer vector elements.

New

pose

data

Before mapping:

Buffer:

0 0 0 0 0 0 0 0 0 0 0 0

Scores:

0 … 0 0 0 0 0 0 0 0 0 0 0 0 0

0

After 11 steps:

Buffer:

0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

 Scores:

s1 0 … 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0

After 12 steps:

Buffer:

p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

 Scores:

s1 s2 0 … 0 0 0 0 0 0 0 0 0 0 0 0 0

11 12 0

Figure 3
Association of straightness score matrix with buffer data

A
p

p
ro

v
e

d
 fo

r p
u

b
lic

 re
le

a
s
e

; d
is

trib
u

tio
n

 is
 u

n
lim

ite
d

.

7

U
N

C
L

A
S

S
IF

IE
D

UNCLASSIFIED

Approved for public release; distribution is unlimited.

9

 The straightness score is calculated from the buffer values according to the procedure shown

in figure 4.

While at pose j,

Find best fit line to

the points B[n] for

n = 1 to 11

BUFFER

(Array B of

consecutive

poses)

Line L

Calculate

straightness score

for the points B[n]

 11

S(1,j) = (1/ Δp)
2
 * (1/11) * Σ (distance from B[n] to L)2

 n = 1

S(2,j) = j

Figure 4
Straightness score calculation

 Let the buffer vector be denoted as B(n), where n ranges from 1 to 11. The first task in
calculating the straightness score is to find the best fit line L to the eleven points in the buffer; only
the x and y elements of the poses are used in this calculation.

 The next task is to calculate the corresponding values of the straightness score array, S. For
a particular column index j, S(1, j) is a straightness score and is derived from the set of eleven (x, y)
points of pose data in the buffer, as illustrated in figure 3. S(1, j) is defined as the normalized (to the
robot’s step distance Δp) mean squared distance from each of the eleven points to the best-fit line L.

 11
 S(1, j) = (1/ Δp)2 * (1/11) * Σ (distance from B[n] to L)2 (1)

 n=1

 The second row element of S at column j is the pose index of the final buffer element that
was used to calculate S(1, j), as illustrated in figure 3. Thus,

 - (2)

 where Nb is the number of elements in the buffer.

 Feature Descriptor and its Derivation for Trajectory Based Algorithm

 The feature descriptor for the trajectory based algorithm is the data shown in table 1
about each detected corner in the trajectory.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

10

Table 1
Descriptor values for trajectory based algorithm

Descriptor values for trajectory based algorithm Variable name for descriptor value

Overall designation of ith corner descriptor Ci
(x, y) coordinates of the vertex Ci.x, Ci.y

Vertex angle Ci.θ

Angular orientation of each leg in a global
reference frame

Ci.αL1, Ci.αL2

Time when the corner was traversed Ci.t

 In table 1, the notation is borrowed from concepts in object oriented programming. The corner
descriptor Ci is conceptualized as an object whose members are the vertex coordinates x and y, the
vertex angle θ, the traversal time t, as well as the angular orientations of the two legs, αL1 and αL2
connected to the vertex. The following is a description of how these pieces of information are
derived.

 As described previously, as the robot travels and each new pose is recorded, the buffer is
updated with the new pose data and the time when the data was measured. Then, the straightness
score is calculated using the current pose plus the ten immediately prior poses, as shown in equation
1. The new straightness score is then saved in the matrix S (fig. 3).

 At this point, now that the straightness score matrix S has been updated with the latest data,
prior values in the matrix are reviewed to determine whether a corner is present in the recent parts of
the trajectory. The next task is to determine whether the matrix of straightness scores indicates the
presence of a corner, and this is done as follows. The straightness score corresponding to a
particular trajectory element is the deviation of the trajectory from the locally best fitted line to the
past 11 trajectory elements. A corner would be recognizable as a local maximum in that deviation.
Thus, we are looking for a local maximum in the elements of the straightness score matrix that
correspond to the past several trajectory elements.

 How far back in the trajectory we look for corners depends on the “size” of a corner in terms
of the number of trajectory steps. In the example presented here, we assume that complete
traversal of a corner can take as many as seven steps. Therefore, the next step in the algorithm is to
examine the past seven values of the second row of S to see whether it has a maximum that
exceeds a user-defined threshold value, minStraightnessVal. Recall that the score values of S in its
first row are dimensionless – the deviation of the trajectory points from the local best-fit line is
normalized to the step size in the trajectory.

 A dimensionless threshold can be selected for use in evaluating the value of S in its first row,
seven steps ago. The value of this threshold should be selected based on an experimental study of
robot trajectories, while traversing corners of various angles. The threshold should be high enough to
filter out gentle curves in the trajectory, e.g., those due to the robot’s meandering, but it should also
be low enough to enable recognition of genuine corners.

 In the corner detection procedure, three questions (to be specified shortly) are asked in order
to determine whether a corner should be defined in connection with the straightness score S(1, m),
where m is the index of the current trajectory element of the robot. Since we are looking at the past
seven trajectory elements, we need to examine elements S(1, m-6) through S(1, m) of matrix S to
determine whether there is a clearly defined local maximum among these values. In particular, we
examine the middle of these seven elements to determine whether it is a local maximum. Since the
set of elements of S are examined in a sliding window manner, all elements of S will end up being
examined in this method.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

11

 The middle of the seven elements is S(1, m-3). This element is examined according to the
following three tests to determine whether it is associated with a corner.

 First, S(1, m-3) is compared to its neighbors in the straightness score matrix according to
these two criteria

(a) the value of the score S(1, m-3) is greater than or equal to the score of each of its
closest neighbors, S(1, m-4) and S(1, m-2), and

(b) S(1, m-3) is greater than all of these more distant neighbors: S(1, m-6), S(1, m-5),
S(1, m-1), S(1, m).

 Second, if S(1, m-3) is a local maximum according to the first test, it is compared to the
threshold value to determine whether it is a sharp enough maximum. If S(1, m-3) is above threshold,
and is also greater than its neighbors as described, then a corner detection has occurred.

 This corner, together with its data shown in table 1, will be cataloged in a “Junction
Database,” as described in the next section. The only situation where this corner would not be
cataloged is when it had been previously cataloged during this excursion of the robot. Thus, the third
test is whether this corner has already been cataloged.

 The corner detection scheme described previously is illustrated in figure 5.

While at pose m, examine the past 7 scores in the straightness score matrix; look for an above-threshold maximum

Score

vector S

Compare element

S(1, m-3) to its

adjacent values

The comparison test is:

S(1, m-3) > S(1, m-4), S(1, m-2)

S(1, m-3) > S(1, m-6), S(1, m-5),

S(1, m-1), S(1, m)

If all these conditions are true,

then S(1, m-4) is considered a

maximum.

S(1, m-3) is a

maximum?

There is no new

above-threshold

maximum here

NO

S(1, m-3) is

above the

threshold?

YES

The threshold ensures that

very low maxima, which

represent gentle curves in

the trajectory, are not

considered corners.

Has the corner

whose vertex is

associated with

S(1, m-3) been

cataloged

already?

YES

YES

Search the

CORNER

DATABASE for

this vertex.

There is an above-

threshold

maximum here

NO

NO

Figure 5
Corner detection procedure for trajectory based algorithm

 There are two possible outcomes of the corner detection process shown in figure 5: either
there is or is not an above-threshold maximum at S(1, m-3). If there is not such a maximum, then no
further processing is done at this step, and the robot travels to the next step in its trajectory. If there
is such a maximum, the next task is to derive the descriptor data shown in table 1.

 The first piece of data to be calculated is the vertex of the corner. We know that S(1, m-3) is a
local, above-threshold maximum. This straightness score is derived from the past eleven trajectory
values that are in the buffer, i.e., m-13 through m-3. We shall define the vertex of the corner as
being the middle trajectory element of this set, i.e., m-8.

 The next task is to determine coordinates for the legs of the corner. The legs are defined as
the best fit line segment for two sets of trajectory elements – those traversed right before
encountering the vertex and those traversed right afterward. That is, one leg, called L1, is the best fit
line segment for trajectory elements m-13 through the vertex, m-8. The other leg, called L2, is the
best fit line segment for the vertex, trajectory element m-8 through the trajectory element m-3. Once

UNCLASSIFIED

Approved for public release; distribution is unlimited.

12

the coordinates of the line segments L1 and L2 are determined, the angle between them can be
found from trigonometry. Although the angle is not an independent number from the data for L1 and
L2, it is convenient to retain it as part of the corner descriptor since it is used later in the algorithm to
compare two descriptors.

 The process for calculating the data for a corner descriptor is summarized in figure 6.

.

S(1, m-3) ,

which has

been found

to be a local

maximum

Find the vertex of

the corner

associated with

S(1, m-3)

Find the legs of

the corner

associated with

pose m-8

Find the angle

between L1 and L2

(i.e. the corner angle),

and the orientations

of L1 and L2

Vertex

coordinates,

vertex

angle, leg

orientations,

time when

corner was

traversed

Figure 6
Descriptor data calculation procedure

 At this point in the algorithm, all the data for the descriptor corresponding to the current pose
in the trajectory (table 1) has been calculated. As each new descriptor is calculated for turns made in
the trajectory, the new descriptor is cataloged in a Junction Database. This database is a repository
of all previously made turns and is used in comparing newly made turns with previously made turns
to determine whether place recognition has occurred.

 Descriptor Comparison Process for Trajectory Based Algorithm

 The next task is to compare the newly calculated descriptor with descriptors from
previous poses in the trajectory. For long trajectories, it can be computationally intensive to compare
the new descriptor with every descriptor that was ever calculated. Therefore, it would be useful to
define a search region, i.e., a subset of previously calculated descriptors to use for descriptor
comparisons. This subset would consist of the set of cataloged descriptors that are most likely to
match the current descriptor. To define some terminology that will simplify the discussion, the
currently measured descriptor will be called the “target descriptor” CT, and the descriptor in the
Junction Database with which the target descriptor is being compared will be called the “candidate
descriptor” CC.

 The following criteria are used to select which descriptors in the Junction Database are most
likely to match the current descriptor and will therefore be compared in detail with the current
descriptor

 Criterion a: |CT.t – CC.t| > tmin (3)

 Criterion b: |CT.t – CC.t| < tmax (4)

 Criterion c: ((CT.x – CC.x)2 + (CT.y – CC.y)2) ½ > dmin (5)

 Criterion d: ((CT.x – CC.x)2 + (CT.y – CC.y)2) ½ < dmax (6)

UNCLASSIFIED

Approved for public release; distribution is unlimited.

13

 Criterion (a) states that the difference in traversal times between the target and candidate
descriptors is greater than a user-defined threshold, tmin. It is possible that the robot will meander a
short distance from a certain location and then backtrack to that same location. We would not want
to consider these two visits to that location as a place recognition event. Therefore, criterion (a)
ensures that we consider only revisits to a certain place that occur at least tmin earlier than the time of
the current visit.

 Criterion (b) states that the difference in traversal times between the target and candidate
descriptors is less than a user defined threshold, tmax. The reason for criterion (b) is that we want to
limit the number of candidates considered in order to reduce the computation time. Therefore, if a
candidate was traversed a very long time ago, we do not evaluate it for place recognition.

 Criterion (c) states that the distance between the target corner and the candidate corner is
greater than a user-defined threshold dmin. The intent of this criterion, similar to that of criterion (a), is
to filter out meanderings.

 Criterion (d) states that the distance between the target corner and the candidate corner is
less than a user-defined threshold dmax. The intent of this criterion, similar to that of criterion (b), is to
filter out candidate corners that are very distant from the target corner in order to reduce computation
time.

 Now that the four criteria for the search region are defined, the Junction Database is
examined to determine which, if any, candidate descriptors in the search region satisfy all four
criteria. If no candidates satisfy all four criteria, then no further calculations are done at this step in
the trajectory, and the robot travels further.

 However, if some candidates that do satisfy all four criteria are found, then these candidate
descriptors are examined in order to determine how closely they match the target descriptor. Three
similarity tests are performed on the candidates to determine their similarity to the target descriptor
(1) proximity of vertices, (2) similarity of corner angles, and (3) similarity of corner orientations. For
each of these tests, a metric is calculated, and then a matching score is calculated as a weighted
sum of the three metric values. The metrics and matching score are defined in such a way that the
lower the value, the better the match. The three metrics are defined as

 ((CT.x – CC.x)2 + (CT.y – CC.y)2) ½ / Δp (7)

 (C
T
.θ – C

C
.θ) / 360 degrees (8)

 (½ |CT.αL1 + CT.αL2 | -

 ½ |CC.αL1 + CC.αL2 |) / 360 degrees
(9)

 Each of the three metrics is normalized so that it is a dimensionless number. The proximity
metric is the Euclidean distance between the vertices of the target and candidate corners,
normalized to the step size in the trajectory, Δp. The corner angle metric is the difference between
corner angles of the target and candidate corners, normalized to 360 deg. The corner orientation
metric is the difference between the centerline orientations for the target and candidate corners,
normalized to 360 deg.

 The next part of the algorithm calculates the matching score for each candidate and selects
the candidate with the lowest score. This algorithm assigns greater weights to the proximity metric
and the corner angle metric than it assigns to the corner orientation metric. That is because drift
errors in the trajectory calculation tend to cause large-scale errors in the map, in which the angle

UNCLASSIFIED

Approved for public release; distribution is unlimited.

14

between the target corners’s legs changes very little, but the entire target corner is rotated in a large-
scale sense. The corner orientation metric is more strongly affected by this type of error than are the
other metrics. Therefore, if the corner orientation metric is too heavily weighted, then false negative
judgments would result, in which two corners that actually represent the same location are judged to
be from different locations.

 Based on these ideas, the suggested weighting to the proximity, corner angle, and corner
orientation metrics are 0.4, 0.4, and 0.2 respectively. Thus, the definition of the matching score is

(10)

 These weights could, of course, be changed if the situation so warrants. Figure 7
shows the procedure for scoring the match between the target and candidate corners. The output of
this procedure is the candidate corner that best matches the target corner and the score that tells
how well it matches the target corner.

List of

candidate

corners in

search

region

Do-loop for each

candidate corner

Calculate metrics

for each criterion

Calculate score,

which is a

weighted sum of

the metrics

bestScore = 1000

A more likely loop closure

candidate will have a lower

score, so initialize with a

high score

score <

bestScore?

bestScore = score;

bestCandidate =

current candidate;

YES

Continue on and

consider next

candidate

NO

Lowest score

(bestScore) and

its associated

candidate

(bestCandidate)

Figure 7
Scoring method for evaluation of target and candidate match for trajectory based algorithm

 Once this lowest score is calculated, it is compared with a user-specified threshold value smax,
which is the largest acceptable score where the match between the target and candidate corners is

UNCLASSIFIED

Approved for public release; distribution is unlimited.

15

considered a place recognition. If this lowest score is greater than smax, then there is no viable place
recognition candidate, so no further calculations are done at this step in the trajectory, and the robot
travels further.

 Derivation of Output Data for Trajectory Based Algorithm

 If this point in the algorithm is reached, then the best matched candidate is considered
a recognized place, and the output data that is to be sent to the trajectory correcting algorithm has to
be calculated. For the trajectory based algorithm, part of the output data is the two alignment points,
namely, the vertices of the target and best-candidate corners

 p (11)

 The remainder of the output data is the matching score associated with this match. In effect,
the robot “tells” the trajectory adjustment program, “My calculations show me that I am at the target
corner, but I think I am at the candidate corner, so please adjust the overall trajectory to co-locate the
two corners. My confidence in this match is indicated by the matching score.” The complete set of
output data for the trajectory based algorithm is shown in table 2.

Table 2
Output data for trajectory based algorithm

Target descriptor, C

T

Candidate descriptor, C
C

Matching score, matchingScore

 Overall Summary of Trajectory Based Algorithm

 Table 3 summarizes the user selectable parameters for the trajectory based
algorithm.

Table 3
List of selectable parameters for trajectory based algorithm

Parameter description Variable name Assumed value, if

any

Robot’s step distance Δp

Number of elements in buffer 11

Straightness score matrix number of columns Indefinitely large

Number of steps in traversal of a corner 7

Threshold straightness for identifying corners minStraightnessVal

Minimum time for search region tmin

Maximum time for search region tmax

Minimum distance for search region dmin

Maximum distance for search region dmax

Threshold score for place recognition candidates smax

 Figure 8 shows a high level overview of the entire trajectory based algorithm. An advantage
of this algorithm is that it does not depend on the wall structure, other than the fact that it assumes
that the trajectory is constrained by some type of wall structure. This algorithm would not be effective
at all in an unconstrained environment because, in such an environment, a turn in the trajectory has
no connection with any particular place.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

16

Perform

STRAIGHTNESS

TEST on all 11

elements of

BUFFER

Update score

vector S

Robot travels the

next path segment

Update BUFFER with

new pose data and

time

Create BUFFER

(initialize with all

zeroes)

Catalog this corner

feature in

CORNER

DATABASE

Define SEARCH

REGION around the

current pose in which

to search for loop

closure candidates

 SEARCH

REGION

contains any

corners?

NO

YES

Calculate CORNER

ANGLE associated

with the found

maximum value in S

Examine recent

poses in S; look

for above-

threshold

maximum value

Is there such a

maximum in S

that hasn’t

already been

cataloged?

YES

Initialize score

vector S with all

zeroes

Robot travels the

next path segment
NO

Apply

CONSISTENCY

TESTS to

candidate corners

Score the

candidates

according to the

CONSISTENCY

TEST criteria

Lowest score <

smax?

Calculate ALIGNMENT

POINTS for lowest scoring

candidate and for target

corner

Send robot’s estimated

location to trajectory

adjustment algorithm

Alignment points are passed

as inputs to the trajectory

adjustment algorithm

YES

Robot travels the

next path segment

NO

Figure 8

High level flow chart for trajectory based algorithm

UNCLASSIFIED

Approved for public release; distribution is unlimited.

17

LT-Junction Based Algorithm

 This section describes, for the LT-junction based algorithm, the input data and its
preprocessing, the feature descriptor and its derivation from the preprocessed input data, the
descriptor comparison process, and the derivation of output data.

 The LT-junction based algorithm is useful for place recognition and loop closure detection in
situations in which a robot is driving in a network of featureless passageways with nominally flat,
parallel walls that constrains its motion to either nominally straight line driving or turning from one
path segment onto another. It uses hallway junction characteristics to label and compare visited
places, and to search for recognized places.

 This algorithm detects junctions shaped like an “L” or like a “T,” though the intersections do
not need to have right angles as the alphabet letters have. Like the trajectory based algorithm, this
algorithm maintains a sliding buffer of eleven consecutive poses to enable detection of junction
features. This algorithm explicitly makes use of wall features; therefore, wall data, as well as
trajectory data is collected at each step of the trajectory. In particular, the buffer contains pose
information for each entry (as was the case for the trajectory based algorithm), and it also contains
data about the local wall segment endpoints and orientations, as well as the distance from the robot
to each wall.

 The algorithm catalogs each junction it detects into a database and compares newly detected
junctions to the junctions in the database in order to determine whether a place recognition event
has occurred.

 Input Data and Preprocessing for LT-Junction Based Algorithm

 The input data for the LT-junction based algorithm consists of two types of data, robot
pose data and data about the adjacent walls. The pose data is a time stamped sequence of 2D robot
poses that could be measured by inertial and possibly other sensors. Each pose is of the form (x, y,
θ, t), where x and y are the 2D coordinates of the center of the robot projected onto the ground in a
global frame of reference, θ is orientation angle of the robot, and t is the time at which the pose data
was measured. As the robot drives along, the pose is measured and recorded at regular intervals,
resulting in a continuous stream of pose data.

 At each pose, data about the wall sections on each side of the robot are measured. One type
of wall data is the line segment which is the projection – onto the x-y (floor) plane – of the wall section
that is within the field of view of the robot’s sensors at the current pose. The line segment is
expressed as a set of (xi, yi, xf, yf, t) points where t is the time of the pose at which that wall section
was measured. Here xi and yi are the coordinates of the initial point in the segment, and xf and yf are
the coordinates of the final point. Another type of wall data is the unit normal vector to each segment
in the x-y plane. Although this unit normal vector is entirely dependent on the wall segment data, it is
convenient to retain the normal vector data for use when comparing two junction descriptors. Yet
another type of wall data recorded in the buffer is the distance from the current pose to the nearest
wall on each side of the robot. All of the wall data can be derived from point cloud data from a LIDAR
system. The wall data can be obtained by using a plane-based segmentation algorithm on the point
cloud to extract side walls and then projecting the side walls down onto the x-y plane.

 A moving buffer is used to store the most recently recorded set of consecutive pose values
and data about the adjacent wall segments. The user is free to choose how many pose values the
buffer contains, but for illustrative purposes, in this report it will be assumed to have eleven values,
and therefore, the buffer will have eleven columns, such that each column contains pose data and

UNCLASSIFIED

Approved for public release; distribution is unlimited.

18

wall data measured from that pose. Using this number of columns enables collection of enough data
in order to derive local properties of the wall structure when looking for junctions.

 The buffer has five rows: the top row is the set of consecutive poses of the trajectory that are
compactly denoted by pi for the ith trajectory step. The second row is wall segment data of points in
the nearest right wall segment, denoted as WRi for the ith trajectory step. The third row is the wall
distance to nearest right wall segment, denoted as dRi. The fourth row is the wall segment data of
points in the nearest left wall segment, denoted as WLi. The fifth row is the wall distance to nearest
left wall segment, denoted as dLi.

 Buffer updating works as follows. As data for each new step in the trajectory is recorded
and/or calculated, the oldest data – the data in the lowest-index column – is discarded, each other
column of data is shifted to a lower index, and the newest data is inserted into the highest-index
column. Figure 9 illustrates the structure and updating of the buffer for the LT-junction based
algorithm. Figure 10 shows the process for recording and updating the buffer data.

A
p

p
ro

v
e

d
 fo

r p
u

b
lic

 re
le

a
s
e

; d
is

trib
u

tio
n

 is
 u

n
lim

ite
d

.

1
9

Before mapping:

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

After 11 steps:

0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

WR1 WR2 WR3 WR4 WR5 WR6 WR7 WR8 WR9 WR10 WR11

 dR1 dR2 dR3 dR4 dR5 dR6 dR7 dR9 dR9 dR10 dR11

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11

dL1 dL2 dL3 dL4 dL5 dL6 dL7 dL8 dL9 dL10 dL11

After 12 steps:

p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

WR2 WR3 WR4 WR5 WR6 WR7 WR8 WR9 WR10 WR11 WR12

 dR2 dR3 dR4 dR5 dR6 dR7 dR9 dR9 dR10 dR11 dR12

WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11 WL12

dL2 dL3 dL4 dL5 dL6 dL7 dL8 dL9 dL10 dL11 dL12

Figure 9
Initialization and updating of buffer matrix using wall data

 Trajectory data

 Right wall segment endpoints, unit normal

 Distance from current pose to nearest wall on right

 Left wall segment endpoints, unit normal

 Distance from current pose to nearest wall on left

U
N

C
L

A
S

S
IF

IE
D

UNCLASSIFIED

Approved for public release; distribution is unlimited.

21

Robot travels next

path segment

Get new robot

pose(2D)

Get wall data from

point cloud

Find distance from current

pose to nearest wall on the

right side of the robot and on

the left side of the robot.

Update buffer with

the new data

(last in first out)

Figure 10
Process for updating buffer data

 Feature Descriptor and its Derivation for LT-Junction Based Algorithm

 The algorithm first determines whether one or both walls have gaps in them by
examining buffer elements. Such gaps indicate the presence of doorways, hallways, and/or rooms.

 Wall gaps are detected by searching prior buffer data (first data for the right side wall and
then data for the left side wall1) for maxima in the nearest-wall-distance versus trajectory-pose

function. Such maxima (if they are above threshold) indicate the presence of a T-junction. It is
important to first search one wall and then the other, rather than both of the simultaneously, in order
to avoid the ambiguity of detecting a + shaped junction. In this algorithm, a + shaped junction is
represented as a pair of back-to-back T-junctions.

 In order to better understand why a maximum in the nearest wall distance versus trajectory
pose function indicates the presence of a wall gap, it is instructive to consider in detail two types of
T-junctions: straight-T junctions and bent-T junctions. A straight-T junction is one in which the robot
travels straight past a not taken path, as shown in figure 11. A bent-T junction is one in which the
robot turns past a not taken path, as shown in figure 12.

1
 At this point, it is important to keep track of which side of the buffer data we are considering, i.e., data for the

right side wall or for the left side wall. This information will be important later when we calculate the descriptor
parameters.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

22

Figure 11
Straight T-junction

Buffer

Robot

Distance to

nearest wall

Gap

UNCLASSIFIED

Approved for public release; distribution is unlimited.

23

Figure 12
Bent-T junction

 In figures 11 and 12, each solid rectangle represents the position of the robot at a point in its
trajectory. The dashed lines on each side of a solid rectangle represent the distance from the “origin”
of the robot to the nearest wall on its right and left side. Here, the “origin” of the robot is defined as
the center point of the robot projected down onto the ground plane. In both of these figures, the
poses whose data is currently in the buffer are enclosed in a box labeled “buffer.” Both figures
illustrate some meandering in the robot’s trajectory since in practice the robot often does meander
somewhat as it drives.

 Figures 11 and 12 illustrate the calculation of the nearest-wall-distance versus trajectory-
pose function. In particular, three functions of the robot position are examined to detect a gap

 The distance of the “origin of the robot” to the nearest wall on its right

 The distance of the “origin of the robot” to the nearest wall on its left and

 The sum of these two distances

 As these diagrams suggest, at locations where the robot drives along a straight hallway, the
sum of the two distance functions is constant. However, at locations where the robot drives past, or
turns onto, a wall gap, the sum of the two distance functions exhibits a maximum. Thus, a maximum
in the sum function indicates the presence of a gap. While the robot is traversing the gap, the sum
function could take on a range of values, depending on the robot’s pose while in that region, and
thus the sum function might not remain at its maximum value throughout the robot’s traversal of the

Buffer

Gap

UNCLASSIFIED

Approved for public release; distribution is unlimited.

24

gap. However, before entering the gap region, and after leaving it, the robot is in straight walled
regions in which the sum function is constant.

 A gap is a region comprised of two sections of straight path in which the sum function is
constant for some distance, with a section in between these two sections that has an above-
threshold maximum value. More specifically, the maximum must have all of these three criteria:

1) At least three consecutive poses in the buffer have a constant sum function value
equal to the hallway width

2) These poses are followed immediately by a maximum value (compared to the three

prior and later poses) that is larger than the hallway width by a user-selectable margin
of deltaWidth

3) Values in the buffer immediately following the maximum include at least three

consecutive poses with constant sum function value equal to the hallway width

 The process of deciding whether a sequence of poses contains a gap is illustrated in figure
13, which shows a set of several consecutive columns of the buffer. Definitions of the data in the
rows of the buffer are shown in figure 9.

p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

WR2 WR3 WR4 WR5 WR6 WR7 WR8 WR9 WR10 WR11 WR12

 dR2 dR3 dR4 dR5 dR6 dR7 dR9 dR9 dR10 dR11 dR12

WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11 WL12

dL2 dL3 dL4 dL5 dL6 dL7 dL8 dL9 dL10 dL11 dL12

Figure 13
Identification of wall distance maximum in buffer

 For illustrative purposes, the current pose is the tenth pose2, p10. The seven poses of p4
through p10 are to be considered. The middle pose of this set, p7, is examined in order to determine
whether it is a maximum. For p7 to be a maximum, the three criteria would be:

(1) The sum function for each of p4, p5, and p6 is equal to the hallway width

(2) The sum function for p7 is larger than the hallway width by a margin of deltaWidth

(3) The sum function for each of p8, p9, and p10 is equal to the hallway width

 Figure 14 shows the process for examining the buffer to determine whether a hallway

segment has a gap in it.

2
 The data for p11 and p12 is shown in light gray because in our example, it has not yet been measured.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

25

BUFFER

data

Calculate the three

functions of the

wall distances in

the buffer at the

current pose

Wall

distance

function

data

One or more walls

has a gap

Does the sum

function have

such a

maximum?

YES

Neither wall has a

gap
NO

Search the Buffer

for a maximum --

with three

characteristics -- in

the sum function

Wall distance function data

1) Right wall distance

2) Left wall distance

3) Sum of right and left

wall distances

Figure 14

Process for determining whether a hallway has a gap

 At this point in the algorithm, a significant decision must be made that determines what kind
of descriptor is to be calculated for the section of the trajectory that is currently traversed. The
decision is whether there is a gap in one or more walls, and the answer is obtained using the
process shown in figure 14. If a gap has been detected, then the wall gap data will be calculated to
obtain the T-junction descriptor. If no gap has been detected, then an L-junction is sought. If an L-
junction is found, then corner data is calculated to obtain the L-junction descriptor. If neither a T-
junction nor an L-junction is found, then no descriptor is calculated at this point in the path. The
following two sections present the derivation of the T-junction and L-junction descriptor, respectively.

 T-Junction Descriptor Derivation

 The section of the algorithm that deals with derivation of the T-junction descriptor is
arrived at if and only if a gap has been detected in the right or left wall, as determined by evaluating
the three characteristics specified in the previous section.

 The seven consecutive poses comprised of the current pose plus the previous six poses
have been found to contain a maximum that indicates a wall gap. This set of poses is now examined
in order to find parameters of the T-junction descriptor. With reference to figure 13, the set of poses
p4, p5, and p6 is referred to as the “BEFORE” region, the pose p7 is referred to as the “DURING”
region, and the set of poses p8, p9, and p10 is referred to as the “AFTER” region.

 The next step is to find which poses correspond to the endpoints of the gap. The endpoints
are designated as the last pose of the “BEFORE” region and the first pose of the “AFTER” region. In
our example, the gap endpoints would be p6 and p8. This pose information will be used to look up
the corresponding wall information in the buffer to more precisely determine the endpoints and
location of the gap.

 The buffer contains information about the walls on both sides of the robot – the right wall as
well as the left wall. So, first verification is needed as to which side of the robot the gap is, and then,
it can be determined which data to retrieve from the buffer. When the search of the buffer for maxima
began, it started with the examination of the right side wall data, and then the left side wall data as
described earlier. Using this information allows the side of the robot on which the identified gap
exists to be determined.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

26

 Suppose, for illustrative purposes, that a gap has been found on the right side of the robot.
We now retrieve the wall data for the gap endpoints, i.e., the wall data for poses p6, p7, and p8, which
is WR6, WR7, and WR8. The wall data stored in these variables is the endpoints of the wall segment
and the normal vector (in the floor plane) to the wall segment. The gap endpoints are the endpoints
in WR6 and in WR8 which are closest to p7. The gap vertex is the midpoint between these two
endpoints.

 The remaining descriptor data that needs to be calculated is the time at which the vertex was
traversed and the angle and width of each leg of the traversed junction. The time at which the vertex
was traversed is the time associated with the “DURING” pose, which in our example is p7. This is
the pose at which the robot was actually traversing the gap.

 The angle and width of the traversed legs are derived from the wall segment coordinates of
the wall segments adjacent to the gap. In our example, the two legs are the leg that spans poses p4
to p6 and the leg that spans poses p8 to p10. For the leg that spans poses p4 to p6, these wall data
variables store the relevant information: WR4, WR5, WR6, WL4, WL5, and WL6. Each of these variables
contains the endpoints and the normal vector for the particular wall segment. Many different
geometric approaches could be used to derive the angle and width of this leg. One possible
approach is to find a best fit line segment to the right-wall segments (WR4, WR5, WR6) and a best fit
line segment to the left wall segments (WL4, WL5, WL6). Then, the normal angle of the leg would be
the mean of the normal’s of the two best fit line segments, and the width of the leg would be the
mean distance between the two best fit line segments.

 At this point, we have derived all the descriptor parameters that we need for the T-junction
descriptor. These parameters are summarized in table 4.

Table 4
T-junction descriptor parameters

The fact that the junction is a T-junction

Vertex coordinates

Coordinates of the start and end points of the gap

Angle of each traversed leg of the junction

Width of each traversed leg of the junction

Time when gap was traversed

 The process for deriving the parameter values for a T-junction is summarized in figure 15.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

27

Values of the

3 functions at

current &

past 6 poses

Divide the

BUFFER data into

three regions

Find the trajectory

elements

corresponding to

the gap endpoints

Find whether the

gap is on the right

or left side of the

hallway

Retrieve from

BUFFER the right

or left wall

segment

coordinates which

correspond to the

trajectory elements

(poses) of interest

From the wall

segment

coordinates, find

the gap endpoints

and vertex

(midpoint between

the two endpoints)

From the retrieved

wall segment

coordinates, derive

the angle and

width of each

traversed leg of

the junction

Retrieve from the

BUFFER the time

at which the vertex

was traversed (the

time of the

“DURING” pose)

The data about this gap to be

cataloged in the JUNCTION

DATABASE

Gap data

for

JUNCTION

DATABASE

Figure 15
Procedure for calculating T-junction descriptor parameters

UNCLASSIFIED

Approved for public release; distribution is unlimited.

28

 L-Junction Descriptor Derivation

 The algorithm reaches this point if and only if neither wall on the sides of the current
pose has a gap in it. In this case, there are two possibilities – either the hallway is straight at this
point, or it has an L-junction, i.e., a simple turn with no side paths. Therefore, the next task is to
determine which possibility is the case. This is determined by calculating the wall angles for the right
and left walls.

 The overall procedure for doing this is as follows. Each element of the buffer is examined to
search for the presence of corners, i.e., nonstraight sections of the walls (recall that the buffer
contains wall data collected at the current pose and at the past ten poses). The algorithm searches
for corners by examining the wall data from each pair of adjacent poses in the buffer to look for
deviations from straightness. For this discussion, let n̂Li

 be the unit normal vector for wall segment
WLi, and let n̂Ri be the unit normal vector for wall segment WRi. Figure 16 uses this notation to
illustrate these definitions of wall normal vectors.

Figure 16

Wall normal vectors for path straightness calculation

 The algorithm calculates the difference vector between the normal’s for each pair of
consecutive right wall segments, and same for the left wall segments. The squared magnitude of the
right and left difference vectors is

 (12)

 (13)

 These difference vectors are calculated for each pair of adjacent wall segments in the buffer.
The algorithm determines whether, for any pair of adjacent wall segments, both ij, right and ij, left are
larger than the user-specified threshold value cornerAngleThreshold.

 If no such adjacent pair of wall segments has difference vector magnitudes this large, then
we conclude that the buffer contains no corners, and the robot continues traveling with no further
calculation being done at the current pose. Otherwise, the next task is to derive the descriptor
parameter values for each found corner that has not already been cataloged in the Junction

n̂Rj

n̂Ri

n̂Lj

n̂Li

Segment i,

left wall

Segment i,

right wall

Segment j,

left wall

Segment j,

right wall

Robot

V

Vertex

UNCLASSIFIED

Approved for public release; distribution is unlimited.

29

Database. For each found corner, the following parameters are calculated: location of the vertex, the
time it was traversed, the width of each leg of the corner, and the angle between the two legs of the
corner.

 The location of the vertex of the corner is illustrated by the “V” in figure 16. In particular, the

vertex is the midpoint between (1) the intersection point between right wall segments i and j, and (2)
intersection point between left wall segments i and j. Just as the location of the vertex is determined
through interpolation, so is the time of vertex traversal. That time is defined as the midpoint between
the times of pose i and of pose j.

 The next task is to find the widths of each leg of the corner. The endpoints of wall segments i
and j can be retrieved from the elements WRi and WLi for leg i, and from WRj and WLj for leg j. The
width of each leg can be found from this data in a variety of ways. One way to do it is to find the
average distance between the two walls associated with pose i, and the same with pose j.

 Finally, the angle between the corner’s two legs, as well as the orientation of each leg, has to
be determined. This angle can be determined from the normal vectors for the wall segments. The
corner angle is the average between two angles: (1) the angle between the normal vectors of the
left-side walls, i.e., angle (n̂Li , n̂Lj), and (2) the angle between the normal vectors of the right side
walls, i.e., angle (n̂Ri , n̂Rj). Viewing figure 16 can make these expressions easier to understand. The
orientation of leg i is the average of the normal vectors of the right and left walls at pose i, i.e., ½ (n̂Li
+ n̂Ri). Similarly, the orientation of leg j is ½ (n̂Lj + n̂Rj).

 At this point, all the descriptor parameters for a particular L-junction corner have been
calculated, and the descriptor is cataloged in the Junction Database. Table 5 summarizes the
parameters that are cataloged for an L-junction.

Table 5

L-junction descriptor parameters

The fact that the junction is an L-junction

Vertex coordinates

Vertex angle

Leg orientations

Leg widths

Time when corner was traversed

 Now that the descriptor data for a particular L-junction has been calculated and cataloged,
the algorithm can go on to calculate these same parameters for the next corner until all corners
observed at the current pose have been cataloged. The process for deriving the parameter values for
an L-junction is summarized in figure17.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

30

Find the vertex of

the corner

associated with

elements i and j.

Find, using data from

BUFFER elements, the legs

of the corner associated with

elements i and j, i.e., the right

and left wall segments WRi &

WLi, and WRj & WLj

Find the corner angle,

and the orientations of

the legs.

BUFFER

data

For each of the

elements in the

BUFFER...

Find Δij, right = |nRi^ - nRj^|
2

for each adjacent pair of

normals for the right

wall, where |i-j|=1

Find Δij, left = |nLi^ - nLj^|
2

for each adjacent pair of

normals for the left wall,

|i-j|=1

Do such i and j

exist?

Determine whether

there exist i and j such

that Δij, right and Δij, left

are both >

cornerAngleThreshold

...End of loop over

BUFFER elements

The BUFFER

contains no corners
NO

For each found

corner (i.e. each i

and j pair)...

YES
The data about corner(s) is

cataloged in the JUNCTION

DATABASE

...End of loop over

corners in

BUFFER

Corner data

for

CORNER

DATABASE

Given the endpoints

of each of the legs,

find the widths of

each leg.

The time of corner

traversal is the time

associated with the

vertex, i.e. midpoint

between times of

pose i.and pose j.

Figure 17

Procedure for calculating L-junction descriptor parameters

UNCLASSIFIED

Approved for public release; distribution is unlimited.

31

 Descriptor Comparison Process for LT-Junction Based Algorithm

 At this point in the algorithm, we have just cataloged in the Junction Database
whichever type of junction that has just been found – either a T-junction or an L-junction. Table 6
summarizes the parameter values that are cataloged for each type of junction.

Table 6
Summary of descriptor parameters for L- and T-junctions

L-junction T-junction

Vertex coordinates Vertex coordinates

Corner angle Coordinates of the start
and end points of the gap

Leg orientations Angle of each traversed
leg of the junction

Leg widths Width of each traversed
leg of the junction

Time when corner was
traversed

Time when gap was
traversed

 Before comparing the newly cataloged junction with previously cataloged junctions in the
Junction Database, it is useful to narrow down the set of junctions in the database that will be used in
the comparison. Therefore, as done previously in the trajectory based algorithm, a search region is
defined which is a subset of previously calculated descriptors to be used for descriptor comparisons.
This subset would consist of the set of cataloged descriptors that are most likely to match the current
descriptor. In the following discussion, the following terminology is used: The “target descriptor” is
denoted as CT, and the descriptor in the Junction Database with which the target descriptor is being
compared is denoted as the “candidate descriptor” CC.

 The first criterion for narrowing down the search set is that only candidate descriptors of the
same type as the target descriptor are searched for. That is, if the target descriptor is for an L-
junction, then only candidate junctions that are also L-junctions are considered, and similarly for T-
junctions. After this initial screening process, the criteria listed in equations 3, 4, 5, and 6 are used to
select which descriptors in the Junction Database are most likely to match the current descriptor and
will therefore be compared in detail with the current descriptor.

 Now that the four criteria for the search region have been applied, the Junction Database is
examined to determine which, if any, candidate descriptors in it satisfy all of the search region
criteria. If no candidates satisfy all four criteria, then no further calculations are done at this step in
the trajectory, and the robot travels further.

 However, if some candidates that do satisfy all four criteria are found, then these candidate
descriptors are examined in order to determine how closely they match the target descriptor. Figure
18 shows the procedure for scoring the match between the target and candidate corners.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

32

List of candidate

junctions in

search region;

type of junction

(L or T)

Do-loop for each

candidate corner

Calculate L-

junction score,

which is a

weighted sum of

the metrics

L-junctionbestScore = 1000

A more likely loop closure

candidate will have a lower

score, so initialize with a

high score

score <

bestScore?

bestScore = score;

bestCandidate =

current candidate;

Continue on and

consider next

candidate

NO

Lowest score

(bestScore) and

its associated

candidate

(bestCandidate)

YES

Retrieve needed data

from BUFFER

T-junction or L-

junction?

Calculate

metrics for L-

junctions

T-junction

Calculate metrics and

score for T-junction

(see page [7])

Figure 18

Scoring method for evaluation of target and candidate match for LT-junction based algorithm

 The input to this process is the list of candidate junctions in the search region which are of
the same type (T or L junction) as the target junction. Each candidate junction is scored according to
the following process, first, the metrics and score for the match between the two junctions are found.
This process is rather complex, and is described in detail in the next two sections – one for L-
junctions and one for T-junctions. Once the score is calculated for the currently considered
candidate, then it is compared with the best score of all the previously considered candidates at this
step in the trajectory. After all candidates have been considered, the output data for the candidate
with the lowest score is calculated. The output data of this method is derived from the descriptor
data of the selected candidate junction and of the target junction. This output data is the vertices of
the two junctions, and later in the algorithm it will be passed to a trajectory adjustment program.

 The next two sections describe the details of the two sets of similarity tests to be used for this
purpose – one set for L-junctions and one for T-junctions.

 L-Junction Similarity Tests and Scoring

 For L-junctions, four similarity tests are performed on the candidates to determine
their similarity to the target descriptor: (1) proximity of vertices, (2) similarity of corner angles, (3)
similarity of corner orientations, and (4) similarity of junction leg widths. For each of these tests, a
metric is calculated, and then a matching score is calculated as a weighted sum of the four metric

UNCLASSIFIED

Approved for public release; distribution is unlimited.

33

values. The metrics and matching score are defined in such a way that the lower the value, the
better the match. The four metrics are defined

 p (14)

 (15)

In these equations, the %diff function is defined

 - (16)

(17)

 Here, the angle of the centerline of a corner is the average of the angles of the two legs of the
corner. The fourth metric for comparisons of L-junctions is

(18) 1

 The first three of these metrics are the same as the similarity metrics for the trajectory based
algorithm. The fourth metric deals with the legs of the corner, which is not relevant to the trajectory
based algorithm. This metric compares the two corners leg by leg and takes the average of the
percent difference of the two leg widths.

 The similarity score for the target and candidate corners is a weighted sum of the four
different similarity metrics. A suggested weighting is

 score =

0.4 * proximityMetric +

0.3 * cornerAngleMetric +

0.15 * cornerOrientationMetric +

0.15 * cornerLegWidthMetric

(19)

 T-Junction Similarity Tests and Scoring

 T-junctions are much more complex than L-junctions. An L-junction has only two legs,
and both of them are traversed by the robot. However, a T-junction has three legs, only two of which
are traversed by the robot. The third leg of a T-junction is not traversed, so all that is known about it
is that there is a gap in the wall at the location of that leg. These concepts can be better visualized by
viewing figures 11 and 12.

 The comparison process between two T-junctions is rather complex. The inputs to the
process are a target T-junction and a candidate T-junction. First, the proximity metric is calculated
for the vertices of the two junctions.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

34

 For the second metric, the two traversed legs of each junction are compared. If we call the
two traversed legs in each junction leg i and leg j, then the following four leg pairs are compared to
obtain preliminary scores

target leg i and candidate leg i

target leg i and candidate leg j

target leg j and candidate leg i

target leg j and candidate leg j

 Each of these four leg pairs is compared in two ways – the leg angle and the leg width. In
particular, for each leg pair, the percent difference for each of the two comparisons is calculated and
added together. Both legs of the leg pair with the lowest preliminary score (recall that a low score
indicates a good match) are tagged. That is, they are tentatively assumed to match each other. The
second metric records this lowest preliminary score.

 The third and fourth metrics determine how well the untagged leg and gap of the target and
candidate junctions compare. The third metric records the comparison between the target gap and
the untagged candidate leg, and the fourth metric records the comparison between the candidate
gap and the untagged target leg.

 These four metrics are listed in equation form

 proximityMetric =

 ’

 ’

(20)

 sharedLegMatchMetric =

%diff (angle of target traversed leg, angle of candidate traversed leg) +

%diff (hallway width of target traversed leg, hallway width of candidate

traversed leg)

(21)

 targetGapCandidateLegMatchMetric =

%diff (target gap width, candidate leg width)

(22)

 candidateGapTargetLegMatchMetric =

%diff (candidate gap width, target leg width)

(23)

UNCLASSIFIED

Approved for public release; distribution is unlimited.

35

 The similarity score for the target and candidate corners is a weighted sum of the four
different similarity metrics. A suggested weighting is

 score =

0.4 * proximityMetric +

0.3 * sharedLegMatchMetric +

0.15 * targetGapCandidateLegMatchMetric +

0.15 * candidateGapTargetLegMatchMetric

(24)

The process for calculating the metrics used to derive this matching score for T-junctions is shown in
figure 19.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

36

Target junction

and a specific

Candidate

junction ; junction

is a T-junction

Calculate preliminary

leg match scores

between each leg

pair of the two

junctions

Designate the largest

of the four preliminary

scores as

sharedLegMatchMetric

Tag the target leg

and candidate leg

with the lowest

preliminary score

Calculate

targetGapCandidateLeg

MatchMetric for the

target gap and untagged

candidate leg

Calculate

proximityMetric for

the vertices of

target junction and

candidate junction

Calculate

candidateGapTargetLeg

MatchMetric for the

candidate gap and

untagged target leg

Values of

the four

metrics

Score for the match

between target junction

and candidate junction

Figure 19
Procedure for calculating matching score for T-junctions

 Derivation of Output Data for LT-Junction Based Algorithm

 The outputs of the scoring method for evaluation of target and candidate matches,
shown in figure 18, are the candidate that best matches the target junction and the matching score.
At this point in the algorithm, the next step is to compare this matching score with a user-specified

UNCLASSIFIED

Approved for public release; distribution is unlimited.

37

threshold value, smax. If the score is greater than smax, i.e., worse than the threshold value, then no
further calculations are performed at this step of the trajectory, and the robot travels further.
Otherwise, the output data of the entire algorithm is calculated.

 For the LT-junction based algorithm, the output data is simply the (x, y) coordinates of the two
vertices – the vertex of the target junction and the vertex of the selected candidate junction, as well
as the matching score. This is the output regardless of whether the junction is an L-junction or a T-
junction. Orientation data from the descriptors is not part of the output since it is up to the trajectory
adjustment program (to which data from this algorithm is passed) to figure out the optimum
orientation of the target pose and candidate pose in the adjusted map. The complete set of output
data for the LT-junction based algorithm is shown in table 7.

Table 7

Output data for LT-junction based algorithm

Target descriptor

Candidate descriptor

Matching score, score

 Overall Summary of LT-Junction Based Algorithm

 Table 8 summarizes the user-selectable parameters for the LT-junction based
algorithm.

Table 8

List of selectable parameters for LT-junction based algorithm

Parameter description Variable name Assumed value,
if any

Robot’s step distance Δp

Number of elements in buffer 11

Threshold for nearest wall distance function in gap
detection for T-junctions

deltaWidth

Threshold for difference in wall segment angle
difference in L-junction detection

cornerAngleThreshold

Minimum time for search region tmin

Maximum time for search region tmax

Minimum distance for search region dmin

Maximum distance for search region dmax

Threshold score for place recognition candidates smax

 Figure 20 shows a high level overview of the entire LT-junction based algorithm. An
advantage of this algorithm is that it makes use of wall data that is available in walled environments
to help make a place recognition decision. This is in contrast to the trajectory based algorithm, which
does not make any use of wall data. A limitation of the LT-junction based algorithm is that it deals
only with L-junctions, T-junctions, and by extension, +-junctions. However, it cannot reliably deal with
more complex junctions, i.e., those with five or more legs intersecting at a single vertex.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

38

Robot travels the next path

segment; Update BUFFER

with new pose data, wall

data, and time

Do one or more

walls have a

gap?

Calculate wall angles

for right and left walls

using point cloud

plane data

NO

Does the

difference in

wall angles

indicate a

corner?

Calculate corner data

YES

YES

Calculate wall gap

data

Catalog this gap or

corner feature in

CORNER

DATABASE

NO

Define SEARCH

REGION around the

current pose (refer to

it as the “target

pose”) in which to

search for loop

closure candidates

SEARCH

REGION

contains any

corners?

YES

Initialize BUFFER

Examine all past

BUFFER values

for wall gaps

Apply SIMILARITY

TEST to candidate

corners

NO

Score the candidates

according to the

SIMILARITY TEST

criteria

Lowest score <

smax?

YES

Calculate

ALIGNMENT

POINTS for lowest

scoring candidate

and for target

corner

NO

Pass alignment points as

inputs to the trajectory

correction algorithm

Figure 20
High level flow chart for LT-junction based algorithm

UNCLASSIFIED

Approved for public release; distribution is unlimited.

39

General Junction Based Algorithm

 This section describes, for the general junction based algorithm, the input data and its
preprocessing, the feature descriptor and its derivation from the preprocessed input data, the
descriptor comparison process, and the derivation of output data.

 The general junction based algorithm is useful for place recognition and loop closure
detection in situations in which a robot is driving in a network of featureless passageways, with
nominally flat, parallel walls, that constrains its motion to either nominally straight line driving or
turning from one path segment onto another. It uses hallway junction characteristics to label and
compare visited places and to search for recognized places.

 This algorithm detects junctions with, in principle, any number of hallway paths connected to
them. Unlike the trajectory based algorithm and the LT-junction based algorithm, this algorithm does
not maintain a sliding buffer to enable detection of junction features. Instead, it takes as an input a
visual 2D image of a LIDAR scan of the region that the robot has traversed until the present time. An
example is shown in figure 21.

Note: Figure supplied by Joshua Wainer of Robotic Research, LLC

Figure 21

Typical input image for general junction based algorithm

 The algorithm uses various image processing methods to extract junctions from the input
image. It then catalogs each junction it detects into a database, and compares newly detected
junctions to the junctions in the database in order to determine whether a place recognition event
has occurred.

 Input Data and Preprocessing for General Junction Based Algorithm

 As with the trajectory based algorithm and the LT-junction based algorithm, this
algorithm uses 2D data as its input. In some ways, the general junction based algorithm is similar to
the LT-junction based algorithm; both algorithms use LIDAR sensor data as their source of

UNCLASSIFIED

Approved for public release; distribution is unlimited.

40

information about environmental features. Both algorithms use wall data as descriptors of the
environment. However, the two algorithms use different representations of wall data.

 The LT-junction based algorithm represents walls in terms of distance from the robot to
nearby walls and lengths of nearby wall segments as measured by a LIDAR sensor. Open source
point cloud processing software (ref. 14) was considered for use in implementing this algorithm,
specifically for identifying wall segments and determining the distance to them. There are some
significant disadvantages to obtaining wall descriptor data directly from point cloud data. For long-
exposure (more than 1 sec or so) point cloud images, the wall edges appear fuzzy due to random
fluctuations in the LIDAR data. It is difficult to identify wall edges in such images using point cloud
data processing techniques. On the other hand, short exposure point cloud images exhibit clearly
defined walls but data on these walls is quite sparse, and that makes it difficult to define the
endpoints, and even the orientation, of wall segments. Figure 22 shows a typical example of a short
exposure point cloud image of a hallway junction.

Note: Figure supplied by Joshua Wainer of Robotic Research, LLC

Figure 22

Short exposure image of hallway junction taken by LIDAR

 In figure 22, a random sample consensus (RANSAC) approach from the Point Cloud Library
was used to extract the walls. In this image, the robot is in the center of the junction facing toward the
lower right corner of the image. To facilitate a qualitative evaluation of the image, the approximate
location of the actual walls is denoted by dash-dot-dash lines.

 Since both long and short exposure images are difficult to analyze using Point Cloud
processing approaches, an alternative approach was considered. In this alternative approach, a
visual (e.g., jpg format) image is formed from a long exposure Point Cloud image. Then, open source
visual processing approaches (ref. 15) are used to extract hallway junction data from the visual
image. This approach is advantageous because a mature and robust set of image processing
procedures is readily available and could effectively extract junction information from the visual

Approximate location

of actual walls is

indicated by dash-dot-

dash lines

UNCLASSIFIED

Approved for public release; distribution is unlimited.

41

images. In the remainder of this section, the image processing methods used to derive corner
descriptors are presented.

 A Gaussian blur (ref. 16) is used as an initial processing step in order to reduce the presence
of artifacts in preparation for edge detection procedures. The scale size of the blur would be selected
by examining a few typical long exposure Point Cloud images of the area to be mapped (or a
different area with similar hallway dimensions) and noting the spatial scales of the hallway widths
and of the noise artifacts in the hallway edges.

 After the Gaussian blur is performed, the next step is to look for corners in the image. This is
done using a Harris corner detector (ref. 17), e.g., by using the function cornerHarris in OpenCV.
This function detects points with high gradients in both the x and y directions. The function returns
the (x, y) coordinates of detected corners. It is possible that this function would return some spurious
corners in addition to the genuine corners. Therefore, it is worthwhile to implement a step to filter out
spurious corners, as a possible example (ref. 18) by using the smallest univalue segment
assimilating nucleus (SUSAN) corner detector after the harris corner detector. However, even if
some spurious corners pass through such a filtering stage, they will quite possibly be filtered out in
future steps in the algorithm.

 At this point the algorithm determines whether any genuine corners have been detected. If
not, then no further calculation is done at this step of the trajectory, and the robot continues driving. If
any genuine corners have been detected, then the following steps are performed for each detected
corner in order to derive parameter values for the corner descriptor for that corner

1. Define a region around the corner in which to search for line segments connected to that
corner. These line segments will be included in the descriptor for this corner. This region
should be small compared with the hallway width in order to avoid including segments from
other parts of the hallway in the descriptor.

2. Within that region, extract edges connected with the corner. A canny edge detector (ref. 19)

from OpenCV can be used for this purpose. This function would return only an image
consisting of detected line segments. We still need coordinates of these line segments.

3. Represent edges as line segments and derive their endpoints. A probabilistic Hough

transform (ref. 20) from OpenCV can be used for this purpose and gives as its output the (x,
y) coordinates of the endpoints of each detected line segment.

4. If any edges connected with the corner are found, record them for immanent use in

populating the descriptor for this corner.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

42

 Figure 23 illustrates the definitions for the various types of hallway feature that may be
detected like corners, vertices, and wall segments.

Figure 23

Terminology for hallway features

 A corner is treated as an object comprised of a vertex and two segments. A vertex is an (x, y)
point. A side is a data structure comprised of two (x, y) endpoints. In the hallway configuration
example shown in figure 23, there are four corners: corner C1, comprised of vertex V1 and sides S1
and S2; corner C2 comprised vertex V2 and sides S3 and S4; corner C3, comprised vertex V3 and
sides S5 and S6; and corner C4, comprised vertex V4 and sides S7 and S8. In table form, the set of
corners in figure 23 would be depicted as shown in table 9.

Table 9

Summary of corner objects in figure 23

C1 C2 C3 C4
V1 V2 V3 V4

 S1 S3 S5 S7

 S2 S4 S6 S8

C1

C2

C3

C4

S1

S2

S3

S4 S5

S6

S8

S7

UNCLASSIFIED

Approved for public release; distribution is unlimited.

43

 The steps involved in the image processing stage of the algorithm are summarized in figure
24.

Robot travels the next path

segment; Records scan;

Creates 2D visual image

based on scan

YES

NO

Initialize Robot

Preprocess image

to reduce noise

(Gaussian blur)

Look for corners in

image (Harris

corner detector)

Filter out spurious

corners (figure out

how to identify

them)

Does image

have any

genuine

corners?

Loop over all

genuine corners in

2D image

Define a region

around the corner

in which to search

for line segments

Extract line

segments in this

region

(Probabilistic

Hough transform)

End of loop over

genuine corners in

2D image

Populate the

descriptor for this

corner

Extract edges in

this region (Canny

edge detector)

ID

hallways

Travel next

path

segment

Figure 24

Summary of image processing stage of general junction based algorithm

 Feature Descriptor and its Derivation for General Junction Based Algorithm

 At this point in the algorithm, all corners in the current scan have presumably been
identified and cataloged as shown in table 9. The next task is to search the identified corners to find
hallways.

 To accomplish this, the descriptors for each pair of detected corners are compared to
determine whether there is a pair of sides, one from each corner, which together form a hallway.
Each pair of corners Ci and Cj , is examined to determine whether it complies with all of the following

UNCLASSIFIED

Approved for public release; distribution is unlimited.

44

hallway criteria. These criteria indicate the presence of a corner plus a hallway comprised of one
side from the corner

 At least one segment from Ci is parallel to at least one segment from Cj, and

 The two parallel segments are at least partially side-by-side (fig. 25), and

 The two parallel segments are close enough to be considered a hallway,
according to a user-specified threshold hallWidthThreshold, which is the
maximum distance between two line segments for them to be considered a
hallway

Figure 25
Illustration of side-by-side segments

 The result of applying the hallway criteria to the hallway configuration in figure 25 is the
following list of hallways

H23: S2 – S3

H15: S1 –S5

H45: S4 – S5

H67: S6 – S7

H81: S8 –S1

 The purpose of the next section of the algorithm is to determine data for, and catalog, the
junction descriptors. Each junction Ji is an object comprised3 of the junction centroid (JCi), and the

centerline segments {Lij} for each of the j legs. The junction centroid is an (x, y,) point. Each
centerline segment is a data structure comprised of the centerline’s two (x, y) endpoints. At this point
in the algorithm, the centroid and legs of the junction must be determined. If the scan contains more

3
 The time ti when the junction was traversed is not included in the descriptor here, although this information

would be very useful, because it is not immediately clear how to obtain or preserve it from the image
processing stage of the algorithm.

Side-by-side

Partially side-by-side

Not side-

by-side

UNCLASSIFIED

Approved for public release; distribution is unlimited.

45

than one junction, then a descriptor is determined and cataloged for each junction. The remainder of
this section describes how to derive the data for the junction descriptor.

. The list of hallways that was previously compiled implicitly contains information about
junctions. In the example, there is a T-junction that has as its legs H81, H67, and H15, and another T-
junction that has as its legs H15, H23, and H45. In general terms, this algorithm must now extract
junction information out of the list of hallways. To do this, for simplicity, each hallway segment is first
collapsed into the line segment which is its centerline. When the two segments are side-by-side, as
defined in figure 25, it is clear how to define the centerline. When the two segments are only partially
side-by-side, then the centerline is defined as the centerline between the side-by-side portion of the
two segments, as shown in figure 26.

Figure 26
Definition of centerline for partially side-by-side segments

 Now that there is a set of centerlines, the two end points of each centerline can be extracted.
Once the set of centerline endpoints is established, the algorithm looks for clusters of two or more
points that are closer together than the typical hallway width. This closeness indicates the presence
of a junction. Figure 27 illustrates the identification of clusters of centerline endpoints in the context
of our hallway example and shows how these clusters indicate the presence of junctions.

Center line

UNCLASSIFIED

Approved for public release; distribution is unlimited.

46

Figure 27

Identification of clusters from centerline endpoints

 A user-defined threshold, clusterThreshold, specifies the maximum distance between
centerline endpoints for the points to be considered part of the same cluster.

 Once all the endpoint clusters have been identified, the centroid of each cluster is calculated,
and these centroids will be designated as the vertices of junctions. At this point, the algorithm makes
note of how many junctions have been identified. This will be important later when comparing the
target scan with candidate scans – the comparison process depends on whether there is only one
junction in each scan, or whether each scan has multiple junctions.

 Now, all the parameters in the junction descriptor can be calculated. To do so, each junction
centroid is associated with the legs of the junction, which are the centerline segments connected
with each of the centerline endpoints in the cluster from which the centroid was derived. It is possible
for a particular centerline to be part of more than one junction. For example, figure 27 shows a
vertical line segment that is part of both junctions. The complete junction descriptor(s) is now stored
in the Junction Database in preparation for performing junction matching processes. Table 10
shows all the components of the junction descriptor.

Clusters

UNCLASSIFIED

Approved for public release; distribution is unlimited.

47

Table 10
Junction descriptor parameters for general junction based algorithm

Name of junction, Ji

Junction centroid, JCi

Leg 1 endpoints, Li1

Leg 2 endpoints, Li2

Leg 3 endpoints, Li3

(data on more legs, if any)

 The steps involved in the image processing stage of the algorithm are summarized in figure
28.

ID

hallways

Loop over all pairs

of recorded

corners in 2D

image

Examine each pair of

corner descriptors

(Ci, Cj) for

compliance with

Hallway Criteria

Hallway Criteria:

1. At least one segment from Ci is parallel

to at least one segment from Cj , AND

2. The two parallel segments are at least

partially side-by-side, AND

3. The two parallel segments are close

enough together to be considered a

hallway

Does the pair

satisfy the

Criteria?

Record the

presence of a

hallway Sk and Sl

YES

End of loop over

all pairs of

recorded corners

in 2D image

NO

Collapse each

hallway by

replacing it with its

center line

Find the centroid

of each cluster

Compile list of

identified hallways

{Hij}, which are

bounded by wall

segments Si and Sj

Set of

centerlines

in terms of

their (x,y)

coordinates

Extract all the

endpoints of all the

centerlines

Find clusters of 2 or

more points that are

“close” together

(compared to typical

hallway width)

Associate each

centroid with the

legs attached to

the endpoints in its

cluster

Matching

Process

Record the

number of junction

centroids (NC) for

future use

Store junction

descriptor(s) in

JUNCTION

DATABASE

Figure 28
Summary descriptor derivation stage of general junction based algorithm

UNCLASSIFIED

Approved for public release; distribution is unlimited.

48

 Descriptor Comparison Process for General Junction Based Algorithm

 As in the trajectory based algorithm and the LT-junction based algorithm, only a
subset of candidates in the Junction Database is searched for potential matches to the candidate
junction(s). This subset consists of candidates whose location is within a specified region of the
target junction. In particular, if we define the coordinates of the target junction centroid as (CT.x,
CT.y), and the coordinates of the candidate target junction as (CC.x, CC.y), then equations 5 and 6
define the criteria for candidate junctions to fall within the search region. The purpose of the user-
specified parameter dmin is to filter out from consideration meanderings of the robot about its current
position. The purpose of the user-specified parameter dmax is to filter out candidate corners that are
very distant from the target corner in order to reduce computation time. If the traversal times of the
junctions are included in the junction descriptors (see footnote 3), then additional criteria (eqs. 3 and
4) can be used to further narrow down the search region.

 The algorithm now determines (as described in further detail later) whether the Junction
Database has any junctions within the search region that has just been determined. If the search
region has no junctions, then no further calculation is done at this step of the trajectory, and the robot
travels further. If the search region does have some junctions in it, then each of these candidate
junctions is compared with the target junction to evaluate how well it matches the target junction. In
performing these comparisons, the algorithm determine how many junction matches there are, i.e.,
how many of the junctions in the target scan have well matching scans in the Junction Database.

 The similarity test has three possible outcomes: {zero, one, or more than one} target
junction(s) has a good match in the Junction Database. If no target junction has a good match in the
Junction Database, then no further calculation is done at this step, and the robot travels further. If
one target junction has a good match, then the single junction matching procedure (described in
detail later) is followed, which yields single junction output data. If more than one target junction has
a good match, then the multi junction matching procedure (described in detail later) is followed,
which yields single junction output data for each matching pair, as well as a multi junction matching
score, which characterizes the overall matching quality of the set of individual matches.

 In the multi junction case, it is important to calculate an overall matching score in addition to
the individual matching scores, because it is possible that the individual junction pairs are well
matched, but the total set of matches is not self-consistent. Figure 29 illustrates such a case.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

49

Figure 29
Example of poorly matching multiple scans

 In figure 29, the current scan has two junctions, and each has a good match in the Junction
Database. Note that the T-junction in the current scan would have to be rotated slightly clockwise to
match the corresponding junction from the database; whereas, the L-junction in the current scan
would have to be rotated slightly counterclockwise. Thus, each individual match is good, but the two
matches are not self-consistent. That is, the T-junction and L-junction in the current scan are close
together and have a certain alignment with respect to each other. However, the two junctions in the
database do not have the same alignment with respect to each other, although they are not far apart
from each other since they are both within the search region. A multi-junction match would show a
poor overall matching score between the junctions in the current scan and the set of junctions from
the Junction Database. In such a case, to maintain self-consistency in our output data, the junction
pair with the highest score is found – in the example either the pair of T-junctions or the pair of L-
junctions – and return only that pair together with its score as output data.

 If more than one junction in the current scan has a good match in the Junction Database, and
the multi-junction match is good, then all well-matching junction pairs (with their matching scores)
are passed as output data. Figure 30 summarizes the overall descriptor matching process. The
single junction and multi-junction matching procedures are described in more detail in later sections.

Current Scan

Set of matching junctions

from junction database

UNCLASSIFIED

Approved for public release; distribution is unlimited.

50

Pass OUTPUT

DATA as inputs

to the trajectory

correction

algorithm

Travel next

path segment

SEARCH

REGION

contains any

junctions?

YES

See if any junction

centroids in the

JUNCTION

DATABASE are

located within the

SEARCH REGION

NO

Matching

Process

List of

candidate

junctions in

SEARCH

REGION

Single

junction

output data

Multi-junction

output data

Travel

further

multiJunctionMatchScore

< distmax ?

Retrieve OUTPUT

DATA for best

matching junction

pair only

YES

Single

junction

data

Multi

junction

data

Pass the following data for

EACH matching junction

pair:

* Target junction descriptor

* Candidate junction

descriptor

* Score for best match

NO

Define

SEARCH

REGION

around the

current robot

position in

which to

search for

loop closure

candidates

[A]

Apply

SIMILARITY

TEST to

candidate

junctions and

calculate

alignment

data

Current scan

has zero, one

or more

junctions?

ONE

MORE THAN ONE

Single

junction

matching

procedure

Multi junction

matching

procedure

ZERO

Figure 30
Overall descriptor matching process

UNCLASSIFIED

Approved for public release; distribution is unlimited.

51

 The similarity test for determining how many junction matches are present is now described.
For each target junction in the current scan, each of the candidate junctions in the search region is
compared with the target junction under consideration. The following procedure is used to evaluate
how well each pair of junctions matches.

 The first consideration is whether the two junctions have the same number of legs. This is
very easily determined by comparing the number of elements in the two descriptors. If the two
junction descriptors do not have the same number of legs, then this candidate junction is not
considered further, and the next candidate junction is considered.

 If the two junctions do have the same number of legs, then an orientation metric is calculated
for the pair of junctions as follows. First, the translation between the two junction centroids is
calculated so that the two junctions can be (conceptually) overlaid one on the other. Then, the listing
of legs in each descriptor is reordered according to each leg’s orientation angle (if the legs in the
descriptors are not already ordered in this way). This ordering enables pair wise matching of the legs
between the two descriptors.

 The next step is to (conceptually) rotate the candidate junction about the overlaid centroids
by increments of deltaTheta, a user-specified parameter, until a full 360-deg rotation has been made.
Figure 31 illustrates an example of the overlay of two T-junctions, one of which has 90-deg angles,
and one of which does not have 90-deg angles. At each increment of rotation, the squared difference
between the angles of each pair of legs is calculated. Then, these squared differences are summed,
and the sum is square rooted. This square root value is the score for that overlay angle. After all
overlay angles have been considered, the maximum score is found, and that score is the metric that
shows how well the two junctions match.

Figure 31
Overlaid junctions at a particular increment of rotation

Leg 3

Leg 3

Leg 2

Leg 2

Leg 1

Target junction

Candidate junction

deltaTheta

Overlaid

junction

Leg 1

UNCLASSIFIED

Approved for public release; distribution is unlimited.

52

 Figure 32 summarizes the process for calculating the orientation metric.

Orientation

metric

calculation

The input to this section is

a pair of individual junction

descriptors: one from the

target scan, and one from

the SEARCH REGION.

Both descriptors have the

same number of legs.

Overlay the candidate

junction on top of the

target-scan junction so

that both centroids

overlap

Rotate the candidate

junction about the overlaid

centroids by deltaTheta

increments until 360

degrees

For each pair of

legs, calculate the

squared difference

between each of

the leg angles with

respect to the

common centroid

Order the listing of

legs in both junction

descriptors in order

of leg angle – from

low to high

End of loop over

deltaTheta

increments

Calculate the

square root of the

sum of the

squared

differences

Find the minimum

root sum of

square angle

difference for all

the rotation angles

orientationMetric

Figure 32

Orientation metric calculation

 At this point in the algorithm, if a more complex junction matching metric is desired, it could
be calculated here. Otherwise, processing is completed for this particular junction pair, and now, the
next candidate junction is considered. After all of the candidate junctions for this target junction have
been considered, the candidate match with the best matching score, orientationMetric, is identified.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

53

 The score is compared with a user-defined threshold, angmax, to determine whether this
match is good enough to be considered a place recognition event. If the score is greater than
angmax, then even the best matching candidate junction is not a close match to the target junction
under consideration, and it is assumed that this target junction represents a place that has not yet
been visited. If the score is less than angmax, then the candidate junction and target junction pair
that achieved this match is preserved for further processing. However, first, any additional target
junctions in the current scan are considered in the same way as was the first target junction. That is,
the algorithm determines whether each additional target junction has a well matching (i.e., matching
score < angmax) candidate junction in the Junction Database. The output of this whole junction
comparison test is a set of target junction candidate junction pairs whose matching score is less than
(i.e., better than) angmax.

 The algorithm now determines whether there is zero, one, or more than one target junction
that has a good match with some candidate junction. If there are no matches, then no further
processing is performed for this pose in the trajectory, and the robot travels further. If there is one
match, then the single junction output data (which has just been determined) is assembled and
prepared for passing to an external trajectory adjustment program. The single junction output data is
summarized in table 11.

Table 11

Output data for general junction based algorithm, single junction case

Target junction descriptor

Candidate junction descriptor

Matching score, orientationMetric

 If there is more than one match, then the multi-junction matching process, described later, is
now followed. Figure 33 summarizes the similarity test that has just been described for finding well-
scoring matches between the set of all target junctions in a scan and the set of junctions in the
Junction Database.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

54

Loop: do this for

each candidate

junction in the

SEARCH REGION

Calculate junction

matching score,

(which could be a

weighted sum of

subscores)

End of loop over

candidate

junctions

Compare number

of legs in target

junction and

candidate junction

Same number

of legs?

Calculate distance

between junction

centroids

YES

NO; consider next candidate

Calculate

orientation metric

(based on

comparison on leg

angles)

Orientation

metric

calculation

Loop: do this for

each junction in

target scan

End of loop over

junctions in target

scan

Derive multi-

junction

output data

Best-match

translation and

rotation angle, and

score, for each of

the target junctions

Target

junction(s)

List of

candidate

junctions in

SEARCH

REGION

Translation

orientation

Metric

Identify candidate

junction with best

matching score,

for the given target

junction

Score, for the

target junction

under

consideration

junctionMatchingScore =

 orientationMetric

A likelier loop closure

candidate will have a lower

score

Does > 1 target

junction have good

candidate

matches?

Single

junction

output data

YES

Best value of

junctionMatchingScore

> angmax ?

NO

YES

Discard the

calculated data for

this target junction,

and continue with

next target junction

Preserve the

calculated data for

the target junction

under

consideration, and

continue with next

target junction

Do any target

junctions have

good candidate

matches? NO

YESTravel

further

NO

Single junction

data
Pass the following data

for the matching junction

pair:

* Target junction

descriptor

* Candidate junction

descriptor

* junctionMatchingScore

Figure 33

Similarity test for target junctions of a particular scan

UNCLASSIFIED

Approved for public release; distribution is unlimited.

55

 Multi-Junction Matching Procedure

 The multi junction alignment process is now described. This process is reached if and
only if more than one target junction in the current scan has a well-scoring candidate junction to
match it. In this case, although each target junction has a good match, all of these matches must be
self-consistent. The purpose of the multi-junction alignment process is to determine an overall
matching error for the set of matches. This data enables a later part of the algorithm (fig. 30) to
decide how to deal with a case in which the overall matching score is poor.

 The input to the multi-junction matching process is the set of descriptors of target junctions,
along with their well matching candidate junctions. The first step is to calculate the overall centroid
CJ for the set of target junction centroids and the overall centroid CD for the set of candidate
thresholds. Figure 34 illustrates the calculation of the overall centroids, CJ and CD.

Figure 34
Definition of overall centroids

 Now, the 2D vector, r = CJ - CD, is calculated. The entire set of candidate junctions is
translated by the vector r so that the two centroids CJ and CD overlap (conceptually). The remainder
of the comparison process is similar to the process of comparing just one pair of junctions. Thus, the
translated set of candidate junctions are rotated in increments of deltaTheta around the common
centroid until a full 360-deg rotation has been made. The goal of this set of rotations is to determine
whether the set of best-match candidates is self-consistent with the layout of junctions in the target
scan. By doing these rotations, we find the rotational angle that gives the best match of the set of
candidate scans to the set of target scans. This metric will be used to evaluate the self-consistency
of the set of high-scoring candidate junctions.

 For each increment of rotation, a distance measure (defined later) between each junction pair
is calculated. Then, these distance measures are summed up over all the junction pairs that are
being considered. To prepare for calculating the distance measure between a particular junction pair,
each leg of the set of target-scan junctions is matched with a corresponding leg of the selected set of
candidate scan junctions. This association is illustrated in figure 35.

X

X

Target junctions
{Ji}

Best-match junctions

from JUNCTION

DATABASE {Di}

Centroid of

junction

centroids

Junction

centroids Junction

centroids CJ

CD

UNCLASSIFIED

Approved for public release; distribution is unlimited.

56

Figure 35
Association between target junctions and database junctions

 The target junctions are denoted as J1 and J2, and the corresponding candidate junctions are
denoted as D1 and D2. Figure 35 illustrates the matching process, which includes the junction pairs
(J1, D1) and (J2, D2). Note that the two members of each pair were matched with each other earlier in
this algorithm – the selected database junction was determined to be the best match with the target
junction.

 Now that each target junction is matched with its corresponding database junction, the
individual legs from each junction must be matched with each other. To do this, the legs in each
junction descriptor are ordered according to their angle, if this has not already been done. Then, the
legs are matched pair-wise in a way that minimizes the total angle difference between all the leg
pairs. This leg matching process is illustrated in figure 36.

Figure 36
Leg matching process for two junctions

Target junction J1

Best-match junction D1

J1: Leg1

J1: Leg2

J1: Leg3

D1: Leg1

D1: Leg2

D1: Leg3

X

X

Target junctions
{Ji}

Best-match junctions

from JUNCTION

DATABASE {Di}

J1

J2

D1

D2

UNCLASSIFIED

Approved for public release; distribution is unlimited.

57

 Figure 36 shows how, for each junction J1 and D1, the legs are ordered according to their
angle with respect to the centroid of their own junction and a horizontal axis.

 Now that each leg pair is defined, the distance measure between the two legs in each pair is
calculated. Since each leg is a line segment, and the two line segments are in general not parallel,
the distance between them is not well defined. This algorithm proposes a definition of distance
between two line segments, and this definition will be used to calculate the overall similarity between
the multiple junction pairs. Using the terminology shown in figure 37, the following procedure is used
to calculate the distance measure between the two non parallel line segments, S1a – S1b and
segment S2a to S2b.

Figure 37
Terminology for calculation of distance between two line segments

 Let the nearest points of the two segments be called S1a and S2a

 Let the farthest points of the two segments be called S1b and S2b

 The non-parallel distance between the two segments is

 (25)

where dist is the 2D euclidian distance function between the two points which are its arguments. It is
possible to use other distance functions as well.

 Now that the distance measure between each individual leg pair has been defined, the total
distance measure between all leg pairs in the junction is calculated. This concludes the processing
for a particular junction pair. This distance measure calculation is repeated for all junction pairs
under consideration, and the sum total over all junctions is calculated.

 Once the total distance measure between all junctions has been found for a particular
increment of rotation, the next increment of rotation is considered, and this distance measure
calculation is repeated for the new increment of rotation. After an entire 360 deg worth of rotations
has been considered, the angle with the lowest distance measure is found, and the overall matching
score between the two sets of junctions is simply that distance measure. This matching score is
called multiJunctionMatchingScore.

S1a

S2b

S2a

S1b

UNCLASSIFIED

Approved for public release; distribution is unlimited.

58

 This completes the calculations for the multi junction scenario, in which the target scan has
more than one junction in it, and each of these target scans has a well-matching candidate junction
in the Junction Database. The multi junction output data is summarized in table 12.

Table 12
Output data for general junction based algorithm, multi junction case

Target junction descriptor

Candidate junction descriptor

Matching score, multiJunctionMatchingScore

 Figure 38 summarizes the similarity test that has just been described for finding well-scoring
matches between the set of all target junctions in a scan and the set of junctions in the Junction
Database.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

59

Derive multi-

junction output

data

Determine centroid

of all of the target-

scan junction

centroids. Call it CJ

Determine centroid

of all of the

candidate junction

centroids. Call it

CD

Define 2D vector r

= CJ – CD

Translate set of

candidate

junctions by r so

that the centroids

overlap

Rotate the translated set of

candidate junctions about

the overlaid centroids by

increments of deltaTheta

over a total of 360 degrees

End of loop over

rotation angles

Find rotation angle

theta that gives the

lowest matching

error, and its

associated

matching score

Multi-junction

output data

multiJunctionMatchScore

Order the legs of each

junction under

consideration, according

to their angle with

respect to their own

junction centroid

Associate each leg

of the target

junction with the

corresponding leg

of the candidate

junction

Consider each individual

junction centroid from the

target scan, together with

its matching candidate

junction centroid

Find the non-

parallel distance

between the two

legs

End of loop over

junction centroid

pairs

Find sum total of all

non-parallel distances

for the various centroid

pairs. Call this the

matching error for the

given rotation angle.

Retrieve the best-match

candidate junction

corresponding to each

target junction

Descriptors

for

candidate

junctions

Multi junction data
Pass the following data for

EACH matching junction

pair:

* Target junction descriptor

* Candidate junction

descriptor

*multiJunctionMatchScore

Figure 38

Calculation of multi-junction output data

 At this point in the algorithm, it was shown how to calculate output data for two different
scenarios: a single junction, or more than one junction, if the target scan has a well matching
junction(s) in the Junction Database. The execution of all of the steps in figure 33, “similarity test for
target junctions of a particular scan,” has been described. In the single junction scenario, the output
data (table 11) is passed to an external trajectory correcting program, and the robot travels further.

 In the multi-junction scenario, a bit of further processing is required. This processing is
shown in figure 30. At this point, multiJunctionMatchingScore is compared with a user-specified
threshold value, distmax, to determine whether the total set of target junctions has a good alignment

UNCLASSIFIED

Approved for public release; distribution is unlimited.

60

with the matching set of candidate junctions. If multiJunctionMatchingScore is less than (i.e., better
than) distmax, then all junction pairs with their matching scores are passed to an external trajectory
correcting program. Otherwise, if multiJunctionMatchingScore is greater than distmax, then, as
described earlier (see fig. 29 and accompanying discussion), only the best matching pair and its
matching score are passed to an external program. In either case, once the output data is passed to
the external program, that completes the processing for this step, and the robot travels further.

 Overall Summary of General Junction Based Algorithm

 Table 13 summarizes the user-selectable parameters for the general junction based
algorithm.

Table 13
List of selectable parameters for general junction based algorithm

Parameter description Variable name

Maximum distance between two line segments to
be considered a hallway

hallWidthThreshold

Maximum distance between centerline endpoints
for them to be considered part of a cluster

clusterThreshold

Minimum distance for search region dmin
Maximum distance for search region dmax
Increment of rotation angles when testing overlay
of two junctions

deltaTheta

Threshold score for place recognition candidates angmax

RESULTS AND DISCUSSION

 This report presents three algorithms that can be used for automated place recognition in
featureless, walled environments. It presents a new type of environmental descriptor that can be
used to characterize featureless, walled environments such as featureless tunnels and building
hallways. They could also be used in feature rich environments to add an additional method for
confirming the validity of a place recognition decision.

 The report also presents a descriptor matching process for the new descriptors. The
algorithms include an approach for descriptor comparisons that is tailored to the new descriptors.
They give as their output data the newly measured descriptor, the previously measured descriptor
which has been identified as a match to the current descriptor, and a matching score that tells how
closely matched the two descriptors are. This output can be passed to an external program that
creates a map of the environment in real time.

 The pair of descriptors that is passed to the external program constitutes a constraint in the
network of nodes that represent each visited place. The matching score represents the strength of
this constraint.

 Each of the three algorithms has its own advantages and specific capabilities. The trajectory
based algorithm is the simplest of the three – it uses only IMU data and does not depend on LIDAR
data. This is both a strength and a weakness. It is a strength in that it could be implemented on a
computationally constrained platform, perhaps even a smartphone, since the data it uses is very
simple. On the other hand, it is a weakness since the algorithm does not take full advantage of the
available data in case the robot has additional sensors on it such as LIDAR. It relies only on the
trajectory, and implicitly on a walled structure that constrains the robot’s motion, to extract

UNCLASSIFIED

Approved for public release; distribution is unlimited.

61

information about the environment. This is not, in general, a very robust approach to place
recognition.

 These weaknesses prompted development of the next algorithm, the LT-junction based
algorithm. This algorithm uses distance-to-nearest-wall data as measured by LIDAR or some other
ranging device. This usage of wall data makes the algorithm more robust than the trajectory based
algorithm. However, the algorithm detects only L- and T-junctions, and by extension to +-junctions,
which can be represented as a pair of back-to-back T-junctions. It cannot detect and form descriptors
for more complex junctions, such as star shaped junctions.

 The general junction based algorithm is a more robust algorithm than the LT-junction based
algorithm. It uses mature and efficient image processing methods to extract data about even
complex junctions. Furthermore, it presents a new type of junction comparison method – it allows
multiple junction pairs to be compared both individually and simultaneously as a group. The group
comparison method allows checking multiple junction pairs for self-consistency, which adds
robustness to the algorithm. However, all this added robustness comes at a computational cost.

 Consideration of this set of three approaches allows the user to select an operating point in
the trade space of computational simplicity versus robustness.

CONCLUSIONS

 The three algorithms presented here represent a set of three approaches to place recognition
in featureless, walled environments, which is a very challenging type of environment for place
recognition. This difficulty is easy to conceptualize by imagining oneself in a featureless tunnel
network such as the one shown in the following figure.

Example of a featureless tunnel environment

 It would be very easy for a human to become disoriented and lost while walking in such an
environment. Robots navigating in such environments have similar difficulties, and they are
technically difficult to address. Many types of feature descriptors have been presented in the

UNCLASSIFIED

Approved for public release; distribution is unlimited.

62

technical literature, but environments like the one shown in the figure have very few unique
instantiations of such descriptors.

 The trajectory and junction based descriptors presented here, and the methods for
comparing them, enable place recognition even in feature poor environments such as that shown in
the figure. Thus, these descriptors and methods expand the frontiers of what type of environments
can be accurately mapped by robots with inertial measurement units and possibly light detection and
ranging (LIDARS). When used together with a place recognition system for featured environments,
these algorithms can supply the missing piece for an all-environment mapping system.

RECOMMENDATIONS

 Since these algorithms have not been implemented as of the date of this report, the author
recommends implementing the algorithms in code, finding optimal values of the user-specified
parameters, and testing their performance to verify and quantify their strengths and weaknesses.

 Regarding the computational platform in which the algorithm will reside, the author
recommends implementing the trajectory based algorithm in a smartphone or other such
computationally constrained platform to test its effectiveness with such constrained resources. The
LT-junction based algorithm and the general junction based algorithm are expected to require more
computational resources, so they could be implemented in a computer that is integrated into a robot.

 Once the algorithms have been thoroughly characterized via experiments, the author
recommends integrating one or more of them into an external mapping program that adjusts the
trajectory in real time based on place recognition events.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

63

REFERENCES

1. Fallon M.F., Johansson H., Brookshire J, Teller S., and Leonard J.J., “Sensor Fusion for
Flexible Human-Portable Building-Scale Mapping,” Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp 4405–4412, 2012.

2. Cummins M. and Newman P., “Appearance-Only SLAM at Large Scale with FAB-MAP 2.0,”
International Journal of Robotics Research, vol. 30, No. 9, pp 1100-1123, 2011.

3. Steder B., Ruhnke M., Grzonka S., and Burgard W., “Place Recognition in 3D Scans Using a
Combination of Bag of Words and Point Feature based Relative Pose Estimation,”
Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp 1249-1255, September 2011.

4. Turner E. and Zakhor A., “Floor Plan Generation and Room Labeling of Indoor Environments
from Laser Range Data,” Presented at International Conference on Computer Graphics
Theory and Applications 2014, Lisbon, Portugal, January 2014.

5. Vallivaara I., Haverinen J., Kemppainen A., and Roning J., “Simultaneous Localization and
Mapping Using Ambient Magnetic Field,” Proceedings of the 2010 IEEE Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI), pp 14-19, Sept. 2010.

6. Zhang H., Martin F., “Robotic Mapping Assisted by Local Magnetic Field Anomalies,”
Proceedings on the 2011 IEEE Conference on Technologies for Practical Robot Applications
(TePRA), pp 25-30, April 2011.

7. Frassl M., Angermann M., Lichtenstern M., Robertson P., Julian B., and Doniec M., “Magnetic
Maps of Indoor Environments for Precise Localization of Legged and Non-legged
Locomotion,” Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp 913 – 920, November 2013.

8. Dubbelman G. and Browning B., “Closed-form Online Pose-chain SLAM,” Proceedings of
IEEE International Conference on Robotics and Automation, May 2013.

9. Bay H., Ess A., Tuytelaars T., and Van Gool L., "SURF: Speeded Up Robust Features,"
Computer Vision and Image Understanding (CVIU), vol. 110, No. 3, pp 346--359, 2008.

10. Fiolka T., Stuckler J., Klein D., Schulz D., and Behnke S., “SURE: Surface Entropy for
Distinctive 3D Features,” Spatial Cognition III, Proceedings of International Conference on
Spatial Cognition 2012, Lecture Notes in Computer Science vol. 7463, pp 74-93, August
September 2012.

11. Stoyanov T., Magnusson M., Andreasson H., and Lilienthal A., “Fast and Accurate Scan
Registration through Minimization of the Distance between Compact 3D NDT
Representations,” International Journal of Robotics Research, vol. 31, No. 12 pp 1377-1393,
2012.

12. Tombari F. Salti S., Di Stefano L., “Unique Signatures of Histograms for Local Surface
Description,” Proceedings of the 11th European Conference on Computer Vision: Part III, pp
356-369, 2010.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

64

REFERENCES
(continued)

13. Nieto J.I., Agamennoni G., Vidal-Calleja T., “Loop-closure Candidate Selection by Exploiting

Structure in Vehicle Trajectory,” Proceedings on IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp 92-97, 2011.

14. Point Cloud Library (www.pointclouds.org)

15. Open CV (www.opencv.org)

16. http://en.wikipedia.org/wiki/Gaussian_blur

17. http://en.wikipedia.org/wiki/Corner_detection

18. Zeng Z.Y., Jiang Z.Q., Chen Q., and He P.F., “An Improved Corner Detection Algorithm
Based on Harris,” Advanced Engineering Forum, vol. 6-7, pp. 717-721, 2012

19. http://en.wikipedia.org/wiki/Canny_edge_detector

20. http://en.wikipedia.org/wiki/Randomized_Hough_transform

UNCLASSIFIED

Approved for public release; distribution is unlimited.

65

LISTS OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

2D two-dimensional
GNSS global navigation satellite system
GPS global positioning system
IMU inertial measurement unit
LIDAR light detection and ranging
RANSAC random sample consensus
SLAM simultaneous localization and mapping
SUSAN smallest univalue segment assimilating nucleus

DISTRIBUTION LIST

U.S. Army ARDEC
ATTN: RDAR-EIK
 RDAR-GC
 RDAR-WSH-N, K. Patel
Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)
ATTN: Accessions Division
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

U.S. Army CERDEC
ATTN: Naomi Zirkind
Electronics Engineer
RDECOM CERDEC I2WD
(RDER-IWR-TE)
6003 Combat Drive
Aberdeen Proving Ground, MD 21005

U.S. Army TARDEC
ATTN: Lonnie Freiburger
6501 East 11 Mile Road
Warren, MI 48397

George Papanagopoulos

George Papanagopoulos

Stephen Leong

